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Abstract

Centralized network structures, which consist of at least one actor – a central agent – whose

behaviour is observed by the rest of the group are predominant across social, political and

economic settings. In public and corporate sectors, central agents such as managers and CEOs,

shape organizational culture and identity, which in turn affects organizational performance.

This paper studies how central agents affect behaviour formation through social learning. We

show that although central agents play a crucial role in driving the group to a consensus, they do

not necessarily exert the most influence on the group’s equilibrium behaviour. In equilibrium,

an agent’s influence corresponds to her eigenvector centrality. We also examine the convergence

rate of behaviour formation and show that it depends on the degree to which central agents

facilitate group cohesion.
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1. Introduction

Centralized network structures are observed in many social, economic and political settings.

What distinguishes centralized networks from other structures is that they consist of at least

one agent – a central agent – whose actions and opinions are observed by the rest of the group.

The media play the role of central agents by transmitting information to mass audiences and

supplying information that people use to make various decisions, ranging from voting to partic-

ipation in public programs.1 In corporate and public sectors, managers and executive directors

act as central agents whose behaviour is observed by the rest of the employees. Research in

organizational science demonstrates that managers directly influence the development of an

∗Corresponding author: University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town
Email address: daniel.opolot@uct.ac.za (Daniel C. Opolot)

1This phenomenon is evident in social media (e.g. Twitter and Facebook), which provides alternative com-

munication platforms that allows member of the media and others in the society to become central agents

(Golbeck et al., 2010; Chadwick and Stromer-Galley, 2016; Borge Bravo and Esteve Del Valle, 2017).
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organization’s culture and identity, which form through the process of social learning.2 An

organization’s culture and identity in turn affects its performance.3 Despite their political and

economic relevance, the literature lacks a framework for examining how central agents influence

group behaviour formation.

Can central agents drive the group to achieve a consensus (i.e. to have identical opinions and

behaviour), and if so, how fast can the outcome be achieved? How much influence do central

agents exert on group behaviour? Answers to these questions will shed light on how to design

policies aimed at regulating group behaviour in centralized networks. Consider an example

of a government interested in promoting a policy or public program. The relevant questions

may range from whether mass media can be used to drive the society to hold a shared positive

opinion towards a policy, and how fast it can be achieved. In addition, who holds the largest

influence on overall group opinion, mass media or some other members of the society? In a

similar vein, managers may be interested to know how much influence they hold within the

organization and which relationships to target in order to influence organizational culture and

identity.

To develop answers to above questions, we draw insights from the literature of social learn-

ing. We specifically assume that people adjust their behaviour to conform with the actions

and opinion of those with whom they share close ties. The empirical evidence of social con-

formism dates back to the work of Asch and Guetzkow (1951) on social pressure. More recently,

Falk and Ichino (2006), Zafar (2011) and Abeler et al. (2011) provide evidence of social con-

formism in work habits and efforts; and Kahan et al. (2012) find evidence of conformism in

opinion formation. Depending on the context, close ties can represent family, friendship and

mass media-audience relationships, or work-related relationships such as belonging to the same

department, office and who-reports-to-whom relations. Close ties are assumed to be heteroge-

neous and non-reciprocal so that people attach different weights to others’ actions and opinions.

The weights individuals attach to each other’s behaviour represents the extent to which they

value each other’s actions and opinions and may depict the level of trust or the frequency of

interaction between them. Under this structure, central agents are those whose behaviour re-

ceives positive weights from the rest of the group. Using this framework, we examine: (i) the

2See for example Bass (1985), Bass and Avolio (1993), Scott and Lane (2000) and Boehm et al. (2015) who

show that managers play a role in the development of an organizations culture; and Besharov (2014) who shows

how organizational identity arise from social learning between members of the organization.
3Barney (1986), Gordon and DiTomaso (1992), Marcoulides and Heck (1993) and Voss et al. (2006) provide

empirical evidence showing that an organization’s culture and identity affects its performance and success.
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nature and composition of equilibrium behaviour in centralized networks, and (ii) the speed of

convergence of the behaviour formation process.

We proceed by first examining how central agents affect equilibrium behaviour. We show

that the presence of at least one central agent is sufficient to drive the group to a consensus.

This implies that within an organization, if every member attaches a positive weight to the

behaviour of managers, no matter how small, then all members of the organization will hold

identical work habits and views about the values that should drive the organization. Similarly,

in public sectors, all connected departments will hold identical work and ethical habits (e.g.

the extent to which individuals engage in corruption).

Although central agents play a crucial role in driving the group to a consensus, they are not

necessarily the most influential in shaping group behaviour. We show that in equilibrium, the

extent of an agent’s influence corresponds to her eigenvector centrality. An agent’s eigenvector

centrality increases with the total weight that other agents attach to her behaviour, and with

the eigenvector centralities of her neighbours. For example, in political networks, the central

agents, i.e. mass media and politicians, are not necessarily the most influential in shaping

society’s attitudes towards policies and public programs. Other members of the society such

as activists and lobby groups may be the most influential.

If central agents drive a society to a consensus, why is heterogeneity in behaviour observable

in many centralized social and organizational structures? The answer to this question lies in

the speed of convergence to a consensus, which we find to depend on the extent to which central

agents hold the group together. We derive a measure of group cohesion for centralized networks

as the sum of the “weakest relationships” that central agents hold with other members of the

group. If the group is highly cohesive, then it converges rapidly to a consensus; otherwise

disagreement persists for longer periods. Our results provide insights into which relationships

to target in order to rapidly achieve a consensus in centralized networks.

In addition to the papers discussed above, our paper contributes to the literature on social

learning, which cuts across fields. It includes DeGroot (1974), DeMarzo et al. (2003), Golub

and Jackson (2010), Acemoğlu et al. (2013) and Melguizo (2016) in economics; DeGroot (1974),

Friedkin and Johnsen (1990) and Friedkin et al. (2016) in sociology; and Hegselmann et al.

(2002), and Olfati-Saber et al. (2007) in computer science. A recurring theme in this literature

is that a consensus emerges in the long-run if a network is strongly connected and does not

consist of cycles, otherwise disagreement persists in equilibrium.4 Disagreement also persists in

4A group of agents is said to be strongly connected in W if for every pair in the group, there exists a path
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the presence of stubborn agents who do not place any weight on others’ behaviour (Acemoğlu

et al., 2013). We significantly improve on this literature by showing that the sufficient condition

for a consensus to emerge, regardless of whether the network is strongly connected or cycles

exist, is the existence of at least one central agent.5

The remainder of this paper is organized as follows. Section 2 formulates the model of

behaviour formation through social learning. Section 3 characterizes equilibrium behaviour of

the model, showing that a consensus emerges in centralized network. Section 4 studies the speed

of learning. The conclusion is offered in Section 5 and proofs are relegated to the Appendix.

2. A model of behaviour formation through social learning

2.1. Interaction structure

We consider a group of agents of finite size denoted by the set N = {1, 2, · · · , n}. The

composition of the group is allowed to be heterogeneous. For example, in political settings, it

can consist of mass media, politician and ordinary citizens; in corporate sectors, it may consists

of managers, CEOs and employees. Within N , each agent observes the behaviours of only a

subset of other agents. For each agent i, we denote by Ni the subset of agents whose behaviour

i observes, and refer to it as the neighbourhood of i.

We use network theory to represent the interaction structure. In particular, we represent

individual interactions by an n × n non-negative interaction matrix, here denoted by W . For

each pair of agents i and j, an element wij of W indicates the weight that i attaches to j’s

behaviour. These weights represent the value agents attach to each other’s actions or opinions,

and may capture the level of trust or the frequency of interaction between them. We consider a

general case where interactions are directed so that wij > 0 need not imply wji > 0, or equality

between wij and wji. For example, a political figure can disseminate her opinions regarding an

issue to her social media followers and not attach any importance to the opinions displayed in

their replies. The interaction matrix W is normalized to be row-stochastic; that is, its rows

sum to one. This normalization is customary in the literature and avoids situation where some

agents’ influence grows without bounds in the dynamic process to be described shortly.

of influence from one agent to the other. If cycles exist, then agents within the cycle will alternate in adopting

each other’s actions and the process never settles into a consensus.
5In Section 4, we discuss how our findings on the speed of learning relate to Golub and Jackson (2012) who

study a similar concept in homophilous networks.
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2.2. Examples of centralized networks

A central agents are those whose behaviour is observed by every other agent in the society.

Formally, this means that if i is central, then wij > 0 for all j ∈ N . Below, we present

examples of centralized networks that are representative of real-world social, economic and

political networks.

Figure 1a is representative of political networks that can be partitioned into subgroups based

on political orientation. In Figure 1a, the society consists of two subgroups: the left leaning

g1 = {1, , 2, 3, 4, 5} and the right leaning g2 = {6, , 7, 8, 9, 10}. Associated to these subgroups

are two media sources or political figures A and B, where A is left leaning and B is right

leaning. All agents listen and attach positive weight to opinions of both media sources but the

weights that members in g1 attach to B is less than the weights they attach to A, and vice

versa for members of subgroup g2. Members within subgroups interact locally and interactions

across subgroups need not occur but if they do, then inter-group weights are much less than

intra-group weights. The two media sources may also attach positive weights to some members

of the society, e.g. politicians, lobby groups and so on. For this type of networks, our model

provides insights on how media sources or political figures influence equilibrium opinions of the

society and the speed of learning.

Figure 1b represent a hierarchical network that is characteristic of corporate organizational

structures. It represents situations where a society, in this case a corporation, is structured into

multiple hierarchies. Members within each hierarchy interact with each other and across hierar-

chies, and all agents observe the behaviour of those at the top of the hierarchy. For this family

of networks, our model helps explain how central agents (e.g. manager) may influence work

habits and attitudes of other members of the organization, which in turn affects organizationals

performance.

Figure 1c is a network where the society is divided into sub-communities that all interact

with central actors. These networks are representative of structures found in many public sec-

tors, where multiple departments interact with the central supervisory or managing department.

In this case our model helps explain how the network structure influences ethical behaviours

like corruption. The extent to which an actor engages in corrupt activities depends on the

willingness of other member within and across departments to also engage in corruption.

2.3. Payoffs and dynamics: social conformism

We consider a behaviour formation process where agents repeatedly minimize the cost of

miscoordinating their behaviour with that of their neighbours. We specifically consider a coordi-
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Figure 1: Examples of centralized networks that are representative of real-world networks: (a) is representative

of political networks, (b) is representative of organizational networks, and (c) is representative of networks found

in public sectors.

nation problem where individuals desire to conform their behaviour to that of their neighbours.

Social conformism is prevalent in a wide range of social, political and economic settings. Social

conformism has been observed in work habits and contributive games (Carpenter, 2004; Falk

and Ichino, 2006; Zafar, 2011; Abeler et al., 2011). There is also evidence from social psychol-

ogy research showing that attitude conflicts in relationships are a source of psychological stress

and instability (Heider, 1946; Festinger, 1962). More recently, Kahan et al. (2012) observe that

individuals conform to beliefs of those with whom they share close ties.

The phenomenon of conformism can be captured in the simplest form by assuming that

agents incur a disutility from misaligning their actions with those of others with whom they

share close ties. Formally, let ai ∈ [0, 1] be the action of agent i, represented by a positive real

number in the interval from zero to one. Here, ai can represent an agent’s choice of political

involvement (e.g. level of engagement in political actions such as protests), or level of effort to

exert in organizational duties. It could also represent a unidimensional attitude toward others’
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attributes, group behaviour, or government policies and public programs; see for example Poole

and Daniels (1985) and Ansolabehere et al. (2008) who provide empirical evidence showing that

individual opinions on a wide range of issues spanning domains such as politics, lifestyles and

the economy, can be described using a unidimensional spectrum. The choice of bounds fo ai
does not influence our results in a qualitative sense and assuming a continuous interval suitably

describes actions where agents choose levels of engagement, efforts or contribution, and the

case of unidimensional opinions.

Let a be a configuration vector representing actions taken by all agents. We assume that

agents simultaneously minimize the disutility of miscoordination at discrete time interval t =

1, 2, · · · . More specifically, let ai(t) and a(t) be the respective action and vector of actions at

t. Then each agent i incurs a disutility Ui(ai(t), a(t− 1)) for misaligning actions ai(t) at time

t, with the observed actions of her neighbours at time t− 1, where

Ui(a(t), a(t− 1)) = −
∑
j∈N

wij(aj(t− 1)− ai(t))2 (1)

The action that minimizes (1) is then

ai(t) =
∑
j∈N

wijaj(t− 1) for i = 1, 2, ·, n. (2)

Given the interaction matrix W and noting that a(0) represents a vector of initial actions,

the system of equations in (2) can be expressed in matrix form as

a(t) = Wa(t− 1) (3)

The dynamic system (3) describes evolution of actions of a group of agents interacting

through a social network with interaction matrix W . In the case of behaviour formation, the

initial vector a(0) can be interpreted as the actions that individuals would take in the absence

of social influence. For opinion formation process, the initial vector corresponds to prior beliefs.

In both case, a(0) is determined by agents’ environment, and their prior experiences, such as

education, political and religious orientation, and so on. From the second equality of (3), we

see that if agents start with the same action, it stays so forever.6 This is a characteristic

of behaviour and opinion formation processes with pure coordination externalities. It also

indicates that a consensus is an equilibrium, although it need not be in cases where agents

start with heterogeneous actions.

6That is, if ai = a for all i ∈ N , then a(0) = ae, where e is a vector of ones. Since W t is row-stochastic,

a(t) = W ta(0) = aW te = ae. And hence, even after t iterations, all agents still choose action a.
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Our subsequent analysis considers situations where the initial vector is not homogeneous.

We characterize equilibrium behaviour, focusing on the role that central agents play. Specifi-

cally, we show in the next section that the presence of central agents is sufficient to drive the

group to a consensus regardless of the distribution of initial actions. We then examine whether

the strategic position of central agents directly translates into greater influence on group be-

haviour. In Section 4, we examine how central agents affect the speed of convergence of an

evolutionary process described by (3). We develop a network based measure that quantifies the

extent to which central agents influence the speed of evolution.

3. How central agents influence equilibrium behaviour

This section characterizes equilibrium of a behaviour formation process represented by (3).

We first show that the presence of at least one central agent is sufficient to drive the group to a

consensus. We then distinguish between the neighbourhood size and influence, and show that

a large neighbourhood size need not directly translate into greater influence on overall group

behaviour.

3.1. Equilibrium behaviour: central agents and consensus

In general networks, the dynamics in (3) converges to either a consensus, where equilibrium

actions are identical, or to equilibrium disagreement where agents behave differently. Let

a∗ = limt→∞ a(t) be a vector of equilibrium actions. If (3) converges to a consensus, then

a∗i = a∗j for all pairs of agents i and j. The definition equilibrium consensus leads to the

following lemma.

Lemma 1. Let e be a column vector of ones. Then a consensus occurs only if there exists a

non-zero vector π so that limt→∞W
t = eπT .

Proof. See Appendix A.1

The matrix eπT consists of identical rows of π, and in equilibrium, agent i’s action is

a∗i =
n∑
j=1

πjaj(0) (4)

Hence, if the society converges to a consensus, then π describes the level of influence that agents

exert on each others’ equilibrium actions. That is, the behaviour and opinions of agents with

the largest influences, as measured by πi’, are the most adopted in equilibrium. For each i, πi
depends on i’s position in the network. In the following proposition, we show that the presence

of a central agent is sufficient to generate a consensus in equilibrium.
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Proposition 1. If a society consists of at least one agent for whom wij > 0 for all j ∈ N , then

there exists a unique well-defined vector π so that limt→∞W
t = eπT .

Proof. See Appendix A.2

Proposition 1 states that the presence of at least one central agent in the group is sufficient

to generate a consensus. Central agents thus act as “mediators” of group behaviour. For the

case of public sector networks described above, Proposition 1 implies that in equilibrium, all

sub-departments will adopt a similar behaviour; that is, all departments will exert the same

level of effort, and exercise similar levels of corruption.

The equilibrium behaviour that the group converges to is determined by the composition

of the influences vector π. The influence vector is equivalent to the left eigenvector of the

interactions matrix corresponding to the leading eigenvalue λ1 = 1; as such, πi is sometimes

referred to as the eigenvector centrality of agent i (Bonacich, 1987). We can thus derive π as a

solution to the set of simultaneous equations πT = πTW , which in turn implies that7

πi =
n∑
j=1

wjiπj (5)

From (5) we see that the eigenvector centrality accords each agent a level of influence that

depends on her total direct influence as measured by the sum wi = ∑n
j=1wji, and on the

quality of her neighbours. The quantity wi is the total weight that all other agents attach to

i’s behaviour. The quality of i’s neighbours corresponds to the eigenvector centralities πj of all

j that attach positive weight to i’s behaviour. If other agents attach sufficiently large weights

to a central agent, then the latter will have the largest eigenvector centrality, and hence the

largest influence on group behaviour.

Example 1: Consider a hierarchical network in Figure 2 that is representative of organiza-

tional structures as discussed above. As depicted by the interaction matrix on the right hand

side of Figure 2, this network has one central agent at the top hierarchy. All other agents at the

lower hierarchy interact with the central agent and with each other. The level of influence that

other agents exert on the central agent varies with the value of the parameter 0 ≤ ε ≤ 1. When

ε = 0, the central agent is not influenced by those at the lower hierarchy and hence acts as an

enforcer of behaviour and rules. As ε tends to one, the central agent’s influence diminishes and

7 Let Π = eπT . Since Π is derived by infinitely iterating W , then Πt = Π and Π = ΠW . This implies that

for each influence vector π, πT = πTW , and hence π is a left eigenvector of W corresponding to the leading

eigenvalue λ1 = 1.
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Figure 2: An example of a hierarchical network, with the respective interaction matrix W on the right hand

side.

the network tends to a horizontal structure where all agents hold the same level of influence.

For this network structure, the eigenvector centralities are: π1 = 1
1+(n−1)ε for the central agent,

and πi = ε
1+(n−1)ε for all other agents i ≥ 2.8 We see that when ε = 0, the central agent

commands complete influence and all other agents conform to her behaviour in equilibrium. In

the example of work habits discussed above, this implies that the entire organization conforms

to the levels of effort exerted by the agents at the top of the hierarchy.

From a theoretical point of view, Proposition 1 significantly improves existing results on

convergence and consensus of the learning dynamics represented by (3). The existing results

show that a consensus arises if and only if the society is made up of exactly one strongly

connected and closed group of agents and that W is aperiodic on that group (Jackson, 2008,

Chapter 8, Corollaries 8.1 & 8.2). A group of agents is said to be strongly connected in W if

for every pair in the group, there exists a path of influence from one agent to the other. That

is, for any pair of agents i and j, either i is directly influenced by j, or there exists a set of

agents i = i1, · · · , ik, · · · , iK = j whereby there is a sequence of links i→ i2 → · · · → iK−1 → j

from i to j, and vice versa. If a strongly connected group is closed, then it is not influenced

by other agents outside of the group. If a society consists of more than one closed group, then

disagreement can persist in the long-run. Indeed, Acemoğlu et al. (2013) show that the presence

of “stubborn” agents, that is agents who are not influenced by others, leads to disagreement

in equilibrium opinions. Aperiodicity on the other hand ensures that no cycles exist within a

strongly connected and closed subgroup. For example, if a cycle exists among a group of agents

{i, j, k}, then the interactions are of the form i→ j → k → i. In such situations, agents within

a cycle alternate in adopting each others actions and the process never settles into a consensus.

Proposition 1 states that what matters for a consensus is a presence of a central agent,

8See (Desai and Rao, 1993) for the derivations.
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regardless of whether the network is strongly connected or cycles exists within subgroups of

the society. Existence of central agents rules out the possibility of stubborn agents. This is

because if there are at least two central agents, then by definition they directly influence each

other, even if only weakly.

3.2. Neighbourhood size vs influence

In Example 1 above, the central agent is able to command the largest influence for all values

of ε ≤ 1. This is because agents at the bottom hierarchy interact uniformly and hence attach

sufficiently large weights to the central agent’s behaviour. Overall, however, it is possible for

some agents at the lower hierarchy to have eigenvector centralities that are greater than for the

central agent. Being centrally placed thus need not directly translate into greater influence on

group behaviour.

Recall that Ni denotes the neighbourhood of i excluding i. Let Nj(i) = Nj ∩Ni be the set

of neighbours shared by i and j; and let wj(i) = ∑
k∈Nj(i) wkj be the total weight that agents

in Nj(i) attach to j. Note that if j is a central agent, then Nj(i) = Ni plus i. The following

proposition shows that having a large neighbourhood size need not translate to greater influence

on group behaviour.

Proposition 2. Let j be a central agent, which by definition means wkj > 0 for all k ∈ N . For

any other i who is not a central agent, wi > wj(i) can be chosen so that πi > πj.

Proof. See Appendix A.3

Proposition 2 shows that it is possible for an agent who is not central to outrank a central

agent in terms of eigenvector centrality, provided the former has loyal followers who attach

large weights to her behaviour. This result underscores the complexity of adaptive processes

with externalities. Results from several empirical studies that use online social networks are

consistent with the predictions of our model. In online social networks such as “Twitter”, the

number of “retweets” is a good measure of how ones ideas and opinions have diffused through

the network, and hence a measures of a user’s influence. The neighbourhood size of an actor

in the network on the other hand corresponds to the number of her twitter followers. Several

studies have empirically examined the relationship between neighbourhood size and influence

using twitter networks.

Cha et al. (2010) analyse a large data set generated from twitter network and “...conclude

that the most connected users are not necessarily the most influential when it comes to en-
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gaging one’s audience in conversations and having one’s messages spread.” They arrive at this

conclusion by examining the relationship between neighbourhood sizes of agents, as measured

by the number of followers, and the number of retweets that the user generates. They find a

very weak correlation between neighbourhood size and retweets. The empirical findings by Cha

et al. (2010) are consistent with the findings in Kwak et al. (2010) who analyse the entire twitter

network, Karlsen and Enjolras (2016) who examine twitter usage by Norwegian politicians, and

Vaccari and Valeriani (2015) who examine social media usage by Italian politicians; they all

find that larger neighbourhood size does not directly translate into greater influence.

Although the analysis in above papers applies to the diffusion of a single opinion contained

in a single tweet, the observed empirical discrepancy between neighbourhood size and influence

is consistent with the rationale underlying the results of Proposition 2. The empirical results

suggests that the extent to which an opinion contained in a tweet diffuses through retweets

depends on the total weight that agents attach to each other’s opinions. The total weights

correspond to the quantity wi for each i. In a similar vein, Proposition 2 shows that what

matter for the level of influence that the agent commands in the group is wi. In a more

complex process where each agent shares her opinions with others in network through retweets,

equilibrium influences are determined by eigenvector centralities. The eigenvector centralities

are collectively determined by wis.

4. The speed of learning: central agents and group cohesion

In this section, we examine how central agents affect the speed of learning. Since the presence

of central agents ensures a consensus in equilibrium, the speed of learning is equivalent to the

speed of reaching a consensus. Studying the speed of learning is relevant because in some cases

achieving a consensus may take many iterations, and updating may be infrequent. Under such

scenarios, a policy maker or leaders of an organization can identify which links to target in

order to rapidly attain a consensus.

We define the speed of learning as the time it takes the dynamic process (3) to get close to

equilibrium. To formalize this notion, we first define what it means to be close to equilibrium.

Recall that in equilibrium, a∗i = a∗ = ∑n
j=1 πjaj(0), identical for all agents. Equilibrium

action a∗ is a weighted average of initial or prior actions, where the weighting vector π consists

of individual influences in equilibrium. Each πjaj(0) is then the contribution of agent j to

the average action in equilibrium. We can compute the average action at time t as ā(t) =∑n
j=1 πj(t)aj(0), where πj(t) is the overall influence of j after t iterations. Since the contribution

of each agent to average action evolves over time, we then define the distance DC(t;W ; a(0))

12



to equilibrium after t iterations under W and for initial vector a(0) as

DC(t;W ; a(0)) =
n∑
i=1
|πi(t)ai(0)− πiai(0)| (6)

where |πi(t)ai(0)− πiai(0)| is the distance of i’s contribution to average action at t, to her

contribution to equilibrium average action. As the process evolves to equilibrium, the distance

DC(t;W ; a(0)) decays to zero. The speed of learning is then the time it takes this distance to

get sufficiently close to zero. That is, for some small real number ε > 0, the convergence time,

or consensus time, CT (ε;W ) is the time it takes DC(t;W ; a(0)) to get below ε.

Definition 1. The consensus time CT (ε;W ) to ε > 0 under interaction matrix W is

CT (ε;W ) = sup
a(0)∈Rn

min{t : DC(t;W ; a(0)) < ε} (7)

It is clear from the definition in (6) that the choice of an initial vector greatly determines

the distance to equilibrium at any t. The initial vector can be chosen so that the distance to

equilibrium is close to zero after a few iterations. The supremum on the right hand side of (7)

ensures that we consider the worst possible choice of the initial vector. Doing so also enables

us to focus on the effect of the network structure on convergence time and not the choice of an

initial vector.

Our main result in this section establishes the extent to which central agents influence

the convergence time. We show that it is the weakest interactions that greatly influence the

speed of learning and not the neighbourhood size of central agents or density of the network. By

weakest interactions we mean the smallest weights that other agents attach to the central agents’

behaviours. The intuition behind this relationship is that a complete consensus is reached in

centralized societies only once the agents who are least influenced by the central agent agree

with the central agent’s actions and opinions. To see how, consider an example of a centralized

network depicted in Figure 3 with the respective interaction matrix on the right hand side.

The eigenvector centralities to the sixth decimal place are π = (0.857143, 0, 0, 0.142857). By

iterating W , we find that agents 1 and 4 converge to their respective centralities of 0.857143

and 0.142857 after 11 steps of updating. Agent 3 converges to her centrality of zero after 18

steps of updating, and agent 2 after 37 steps. Clearly, the weakest link, from agent 2 to the

central agent, determines when complete consensus occurs.

To formalize this argument, let q be a nonnegative column vector derived fromW as follows.

Define qi ≡ min1≤j≤nwji for i = 1, 2, · · · , n, so that q = (q1, q2, · · · , qn)T . Each qi is the least

intensity of attention that i receives from other agents; qi > 0 only if all agents pay attention
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Figure 3: An example of a centralized network, with the respective interaction matrix W on the right hand

side.

to i including self-influence, it is zero otherwise. The vector q is thus only non-zero if and only

if there is at least one central agent. Given W and q, we then define a parameter β = ∑
i∈N qi.

The parameter β measures network cohesion, or the extent to which central agents bring

the society together. This is because central agents act as “social connectors” by reducing the

path lengths between any pair of agents. Any pair of agents who are not directly connected

influence each other’s behaviour through the central agent. If all agents attach higher weights

to central agents’ behaviours, then the society is highly cohesive with very short distances

between any pair of agents; consequently β will be large. If on the other hand there are agents

who attach small weights to central agents’, then their connections act as the “weakest bridges”

or “bottlenecks” between the section of the group that interacts with these agents and central

agents. The following proposition establishes the relationship between consensus time and

parameter β.

Proposition 3. The convergence time in the model of learning described by (3) is bounded by

ln(ε/2r)
ln
(
1− β

) − 1 ≤ CT (ε;W ) ≤ ln(ε/2)
ln
(
1− β

) − 1 (8)

where 0 ≤ r ≤ 1
β

(∑n
i=1 q

2
i )

1
2 ≤ 1.

Proof. See Appendix A.4

Proposition 3 shows that the convergence time decreases with β. If central agents do not

have the capacity to keep the society cohesive so that β is very small, then disagreement in

14



actions may persist over extended periods. Centralization of the group is thus not sufficient to

rapidly drive it to a consensus. Instead, it is the extent to which they facilitate group cohesive.

Consider an example of a political network of Figure 1a, with two central agents A and B

representing left and right leaning political media sources respectively. From the definition of

q and β, it follows that β = qA + qB, where qA ≡ min1≤j≤nwjA and qB ≡ min1≤j≤nwjB are

respectively the least weights that a left-leaning agent attaches to a right-leaning media source,

and the least weight that a right-leaning agent attaches to a left leaning media source. The

smaller these two values, the smaller is β, and the longer disagreement persists in the society.

Our results have policy implications for governments and organizations that aim to reduce

disagreement. Our results suggest that the crucial relationships for targeting are the weakest

ties. In most social, economic and political settings, the relationships with the lowest trust are

usually apparent, and hence, it is not costly to identify them. The costly aspect comes in at

the stage of providing suitable incentives to strengthen such relationships. The decision that

governments and organizations face in such settings is to weigh the costs of providing incentives

to strengthen the weakest ties, against the benefits of achieving a consensus.

Our results are related to Golub and Jackson (2012) who show that the speed of naïve

learning decreases with the second largest eigenvalue of the network. Golub and Jackson (2012)

also show that the second largest eigenvalue measures the extent of homophily in the network,

which is the tendency of individuals to attach most weight to the behaviour of those with whom

they share attributes e.g. race, political orientation, income classs, e.t.c. This interpretation

directly implies that overall network cohesion should be proportional to one minus the second

largest eigenvalue of the interaction matrix. The following corollary establishes the relationship

between the second largest eigenvalue and β.

Corollary 1. Let W be an interaction matrix with the second largest eigenvalue µ2(W ), and

let β be as defined above. Then µ2(W ) ≤ 1− β

Proof. See Appendix A.5

Corollary 1 shows that the results of Proposition 3 not only establish the role of central

agents in influencing the speed of learning, they also provide an alternative characterization.

The computation and interpretation of the second largest eigenvalue requires complete knowl-

edge of the network structure. The weakest relationships to the central agents on the other

hand are easier to identify and quantify and have straightforward interpretations.
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5. Concluding remarks

The question of how peoples’ attitudes and behaviours evolve is at the centre of behavioural

sciences. The models of adaptive learning with naïve rules have been instrumental in explaining

the processes of opinion formation and behavioural change. Empirical studies also suggests

that people indeed tend to follow naïve rules of learning. The objective of this paper has been

to examine how central agents influence the process of behaviour formation through social

learning. Our study is motivated by the observation that centralized organizational structures

are predominant across social, economic and political settings. The advent of internet and

social media has also made it possible for many public figures to become central agents, in

addition to the traditional central agents such as radio and TV broadcasters.

We have shown that the presence of at least one central agent is sufficient to drive the

society to a consensus. In equilibrium, the level of influence that central agents exert on others’

behaviour is determined by how much weight that other agents attach to the formers’ actions.

Central agents are not necessarily the most influential however. We also examined how central

agents affect the speed of convergence to a consensus. We showed that in societies with at least

one central agent, the speed of learning depends on the weakest links to the central agents.

The direct implication is that centralization is not a sufficient to rapidly drive the society to a

consensus. Our results have direct policy implications for organizations and governments that

aim to reduce disagreement.

Appendix A. Appendix

Appendix A.1. Proof of Lemma 1

First note that (3) can be rewritten as a(t) = W ta(0) so that the vector of equilibrium

actions a∗ is given by

a∗ = lim
t→∞

W ta(0) (A.1)

From the right hand side of (A.1), if limt→∞W
t = eπT , then a∗ = eπTa(0), which implies that

a∗i = ∑n
j=1 πjaj(0) = ∑n

k=1 πkak(0) = a∗j for all i and j.

Appendix A.2. Proof of Proposition 1

Recall that a consensus implies that limt→∞W
t = eπT . Let Π = eπT , and note that since

Π derives from infinitely iterating W , then ΠW = Π. It follows from the structure of Π as a

matrix with identical rows of π that

πT = πTW (A.2)
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From (A.2), the vector π is the left eigenvector of a row-stochastic matrix W corresponding

to the leading eigenvalue λ1 = 1. To proof that the dynamics system (3) converges to a

consensus, it suffices to show that there exists a unique vector π that solves the system of

equation represented by (A.2).

We proceeds by first rewriting the interaction matrix W as a function of another matrix W̄

as follows. Define qi ≡ min1≤j≤nwji for each i ∈ N , and let q = (q1, q2, · · · , qn)T . Each qi is the

least weight attached to i by other agents. Since the network consists of at least one central

agent, that is there exists at least one agent i for whom wij > 0 for all j ∈ N , then q has at

least one i with qi > 0.

Now, let β = ∑
i∈N qi and define a vector x̄ as x̄ = 1

β
q. The vector x̄ is thus a normalized

version of q so that ∑i∈N x̄i = 1. All these definitions and properties are unique to networks

with at least one central agent. We then define another matrix W̄ as

W̄ = 1
1− β

(
W − βex̄T

)
(A.3)

where ex̄T is a matrix with identical rows of x̄. Consequently, each element of W̄ is w̄ij =
1

1−β (wij − xj), and W can be equivalently expressed as.

W = (1− β)W̄ + βex̄T (A.4)

Note that by definition, if at least one central agent exists, then β ∈ (0, 1]. Note also that

just like W , W̄ is also row-stochastic. That is

W̄e = 1
1− β

(
We− βex̄Te

)
= 1

1− β (e− βe) = 1
1− β (1− β) e = e

To find π, we then substitute W as defined in (A.4) into (A.2) to yield

πTW = (1− β)πT W̄ + βπTex̄T = (1− β)πT W̄ + βx̄T

And hence, letting I denote an identity matrix, π is then given by

πT = βx̄T
[
I − (1− β)W̄

]−1
= βx̄T

[ ∞∑
τ=0

(1− β)τW̄ τ

]
= β

∞∑
τ=0

x̄T
[
(1− β)τW̄ τ

]
(A.5)

We know from Debreu and Herstein (1953, Theorem III) that is W̄ is indecomposable, which

is true in our case since there exists at least one central agent, then
[
I − (1− β)W̄

]−1
> 0,

that is a matrix with positive entries, if and only if λ1(W̄ ) ≤ 1
1−β , where λ1(W̄ ) is the largest

eigenvalue of W̄ . Since W̄ is row-stochastic, λ1(W̄ ) = 1; hence
[
I − (1− β)W̄

]−1
> 0 if and

only if 1
1−β > 1, which holds since β ∈ (0, 1]. It then follows from (A.5) that the vector π is

unique and non-zero.
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Appendix A.3. Proof of Proposition 2

Let Nj(−i) = Nj\Ni be the set of agents in the neighbourhood of j excluding all agents be-

longing to the neighbourhood of i; Just Nj, Nj(−i) also excludes j. Let wj(−i) = ∑
k∈Nj(−i) wkj

be the total weight that agents in Nj(−i) attach to j. Then from (5), πj can be re-written as

πj =
∑

k∈Nj(−i)
wkjπk +

∑
l∈Nj(i)

wljπl (A.6)

The difference πi − πj is then

πi − πj =
∑
k∈Ni

wkiπk −
∑

k∈Nj(i)
wkjπk −

∑
l∈Nj(−i)

wljπl

=
∑
k∈Ni

(wki − wkj)πk −
∑

l∈Nj(−i)
wljπl j is a central agent: Nj(i) = Ni

≤
∑
k∈Ni

(wki − wkj)−
∑

l∈Nj(−i)
wljπl assumes that

∑
k∈Ni

wki >
∑
k∈Ni

wkj

= (wi − wj(i))−
∑

l∈Nj(−i)
wljπl (A.7)

Hence, given wj(−i) and ∑l∈Nj(−i) wljπl, we can choose wi > wj(i) so that πi > πj.

Appendix A.4. Proof of Proposition 3

The proof proceeds by first deriving the vector of influences π(t) at t, then deriving bounds

for the supremum of DC(t;W ; a(0)), which we then use to derive bounds for the convergence

time. Recall the expression for equilibrium influence vector from Section Appendix A.2,

πT = βx̄T
[
I − (1− β)W̄

]−1
= βx̄T

[ ∞∑
τ=0

(1− β)τW̄ τ

]
= β

∞∑
τ=0

x̄T
[
(1− β)τW̄ τ

]
(A.8)

where x̄ = 1
β
q, and q and β are as defined above; x̄ is thus a normalized version of q so that∑

i∈N x̄i = 1, and where the relationship between W and W̄ is

W = (1− β)W̄ + βex̄T (A.9)

As shown in Section Appendix A.2, W̄ is non-negative and row stochastic just asW . Define

matrices M [β](t) and M [β](∞) respectively as follows

M [β](t) = β

1− (1− β)t+1

t∑
τ=0

[
(1− β)τW̄ τ

]

M [β](∞) = β
∞∑
τ=0

[
(1− β)τW̄ τ

]
From (A.8), it follows that πT = x̄TM [β](∞). For a matrix W̄ and for each pair of agents i and

j, m[β]
ij (∞), the element in the ith-row and jth-column ofM [β](∞), is the level of influence that
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j exerts on i’s opinions in equilibrium. Put differently, it is the expected normalized number

of times j’s opinion is incorporated in i’s opinion. A similar interpreation follows for m[β]
ij (t) of

M [β](t) after t iterations. This interpretation is supported by the following claim.

Claim 1. For a random walk process on (1−β)W̄ , 1−(1−β)t+1

β

∑t
τ=1((1−β)w̄ij)τ is the expected

normalized number of visits to j starting from i after t iterations

Claim 1 follows from the following argument. Let Yt be the random walk process on the

matrix (1 − β)W̄ , and let It = 1 if the process is in j at period t and zero otherwise, so that

the number of visits to j from i in t transitions is ∑t
τ Iτ . Viewed this way, the quantity 1− β

is the probability that at any given time t, the random walk process occurs; and if it occurs,

if follows the transition probabilities described by W̄ . Let P (E) be the probability of event E.

The expected number of visits to j starting from i after t transitions is then

E
[

t∑
τ

Iτ | Y0 = i

]
=

t∑
τ

E
[
Iτ | Y0 = i

]
=

t∑
τ

[
1× P (Iτ | Y0 = i) + 0× (1− P (Iτ | Y0 = i))

]
=

t∑
τ

P (Iτ | Y0 = i) =
t∑

τ=1
((1− β)w̄ij)τ

Normalizing by a factor of ∑t
τ=0(1 − β)τ = 1−(1−β)t+1

β
, which is the total number of times the

random walk process follows the transition probabilities described by W̄ , then implies that

m
[β]
ij (t) = β

1−(1−β)t+1
∑t
τ=0((1 − β)w̄ij)τ is the expected normalized number of visits to j after

t iterations starting from i. In relation to above definitions, this value is then the level of

influence that j exerts on i. And hence, it is the normalized number of times j’s opinion is

incorporated into i’s opinion after t iterations. In the long-run,

lim
t→∞

M [β](t) = lim
t→∞

β

1− (1− β)t+1

[
t∑

τ=0
((1− β)W̄ )τ

]
= β

∞∑
τ=0

((1− β)W̄ )τ = M [β](∞)

where the second equality follows from limt→∞
β

1−(1−β)t+1 = β. Given M [β](t), the influence

vector π(t) after t iterations is then πT (t) = x̄TM [β](t). We would then like to establish bounds

for DC(t;W ) = supa(0)∈Rn DC(t;W ; a(0)), where

DC(t;W ; a(0)) =
n∑
i=1
|πi(t)ai(0)− πiai(0)| (A.10)

First note that

DC(t;W ; a(0)) =
n∑
i=1
|πi(t)ai(0)− πiai(0)| =

n∑
i=1
|(πi(t)− πi) ai(0)| =

n∑
i=1
|πi(t)− πi| |ai(0)|

(A.11)

But since ai(0) ∈ (0, 1], then the supremum of DC(t;W ; a(0)) is

DC(t;W ) = sup
a(0)∈Rn

n∑
i=1
|πi(t)− πi| |ai(0)| =

n∑
i=1
|πi(t)− πi| (A.12)
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The second equality on the right hand side of (A.12) is equivalent to the Euclidean distance

between vectors π(t) and π; that is

DC(t;W ) =
n∑
i=1
|πi(t)− πi| = ‖π(t)− π‖1 (A.13)

Substituting the expressions for π(t) and π into (A.13) yields

DC(t;W ) =
∥∥∥x̄TM̄ [β](t)− πT

∥∥∥
1

= β

∥∥∥∥∥ 1
1− (1− β)t+1

t∑
τ=0

(1− β)τ
[
x̄T W̄ τ

]
−
∞∑
τ=0

(1− β)τ
[
x̄T W̄ τ

]∥∥∥∥∥
1

(A.14)

Let x̄T (τ) = x̄T W̄ τ , so that {x̄(τ)}τ≥0 is a random walk on W̄ with initial vector x̄. This

interpretation of x(t) is feasible since W̄ is a row-stochastic matrix. It follows from the property

of random walks that ‖x̄(t)‖1 = ∑n
i=1 | x̄i(t) |= 1 at each t = 0, 1, · · · From (A.14), we have

DC(t;W ) = β

∥∥∥∥∥ 1
1− (1− β)t+1

t∑
τ=0

(1− β)τ x̄(τ)−
∞∑
τ=0

(1− β)τ x̄(τ)
∥∥∥∥∥

1

= β

∥∥∥∥∥ (1− β)t+1

1− (1− β)t+1

t∑
τ=0

(1− β)τ x̄(τ)−
∞∑

τ=t+1
(1− β)τ x̄(τ)

∥∥∥∥∥
1

(A.15)

Using triangular inequality gives

DC(t;W ) ≤ β

∥∥∥∥∥ (1− β)t+1

1− (1− β)t+1

t∑
τ=0

(1− β)τ x̄(τ)
∥∥∥∥∥

1
+
∥∥∥∥∥
∞∑

τ=t+1
(1− β)τ x̄(τ)

∥∥∥∥∥
1

≤ β

[
(1− β)t+1

1− (1− β)t+1

t∑
τ=0

(1− β)τ ‖x̄(τ)‖1 +
∞∑

τ=t+1
(1− β)τ ‖x̄(τ)‖1

]

= β

[
(1− β)t+1

1− (1− β)t+1 .
1− (1− β)t+1

β
+ (1− β)t+1

β

]

= 2 (1− β)t+1 (A.16)

For the lower bound, we use the following results on reverse triangular inequality from Diaz

and Metcalf (1966, Theorem 1). Let u be a unit vector in the Hilbert Space. Suppose the

vectors x̄(1), · · · , x̄(n), whenever x̄(τ) 6= 0 satisfies 0 ≤ r ≤ Re〈x̄(τ),u〉
‖x̄(τ)‖ , where Re stands for

“real number” and 〈x,y〉 = ∑n
i=1 xiyi, is the inner product of x and y. Then∥∥∥∥∥

n∑
i=1

x̄(τ)
∥∥∥∥∥ ≥ r

n∑
i=1
‖x̄(τ)‖ (A.17)
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Applying inequality (A.17) to (A.14) yields

DC(t;W ) = β

∥∥∥∥∥ (1− β)t+1

1− (1− β)t+1

t∑
τ=0

(1− β)τ x̄(τ)−
∞∑

τ=t+1
(1− β)τ x̄(τ)

∥∥∥∥∥
1

≥ rβ

[
(1− β)t+1

1− (1− β)t+1

t∑
τ=0

(1− β)τ ‖x̄(τ)‖1 +
∞∑

τ=t+1
(1− β)τ ‖x̄(τ)‖1

]

= rβ

[
(1− β)t+1

1− (1− β)t+1 .
1− (1− β)t+1

β
+ (1− β)t+1

β

]

= 2r (1− β)t+1 (A.18)

We now derive the bounds for r based on the definition above. The summations on the

right hand side of (A.15) consists of vectors x̄(τ) for τ = 0, 1, 2, · · · . To derive an upper bound

for Re〈x̄(τ),u〉
‖x̄(τ)‖ , we choose a τ so that the corresponding x̄(τ) maximizes the former. Since the

distance to consensus, DC(t;W ), decays over time, the largest vector in the summation of the

first equality of (A.15) is when τ = 0; denoting it by v, we have

v = β
1

1− (1− β)(1− β)0x̄(0)− β(1− β)0x̄(0) = (1− β)x̄

Let ‖x̄‖2 = (∑n
i=1 x̄

2
i )

1
2 be the length of vector x̄. We can then define an arbitrary unite vector

u = 1
‖x̄‖2

x̄. Note also that ‖v‖ = (1− β) ‖x̄‖ = (1− β). Substituting into Re〈x̄(τ),u〉
‖x̄(τ)‖ yields

Re〈x̄(τ),u〉
‖x̄(τ)‖ ≤ Re〈v,u〉

‖v‖
=
(

1− β
‖x̄‖2

)
〈x̄, x̄〉
1− β = 1

‖x̄‖2
〈x̄, x̄〉 = 1

‖x̄‖2
‖x̄‖2

2 = ‖x̄‖2

And hence 0 ≤ r ≤ (∑n
i=1 x̄

2
i )

1
2 ≤

(
(∑n

i=1 x̄i)
2
) 1

2 = 1. Since x̄ = 1
β
q, it follows that

(∑n
i=1 x̄

2
i )

1
2 = 1

β
(∑n

i=1 q
2
i )

1
2 .

Since β 6= 0, that is there is at least one central agent in the society, then from the upper

bound of DC(t;W ) in (A.16), if t ≥ ln(ε/2)

ln
(

1−β
) − 1, then DC(t;W ) ≤ ε. The upper bound for

CT (ε;W ) then follows from Definition 1.

Similarly from (A.18), if t ≤ ln(ε/2r)

ln
(

1−β
)−1, thenDC(t;W ) ≥ ε. The lower bound for CT (ε;W )

also then follows from its definition 1.

Appendix A.5. Proof of Corollary 1

Recall the following definitions of W and W̄

W = (1− β)W̄ + βex̄T (A.19)

W̄ = 1
1− β

(
W − βex̄T

)
(A.20)
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Recall also that β = ∑
i∈N qi and x̄ = 1

β
q. We can thus rewrite (A.20) as

W̄ = 1
1− β

(
W − eqT

)
(A.21)

Define another matrix

Ŵ = W − eqT = (1− β)W̄ (A.22)

and note that bothW and W̄ are row-stochastic; that isWe = e and W̄e = e. Let vj be the left

eigenvector of W corresponding to a non-negative eigenvalue µj. Then vTj e = vTjWe = µjvTj e,

which in turn implies that vTj e(1− µj) = 0; and since (1− µj) 6= 0, then vTj e = 0. The direct

implication of the latter equality is that vTj Ŵ = vTjW = µjvTj , so that Ŵ and W have similar

non-zero eigenvalues and corresponding eigenvectors.

The result of proposition then follows from noting that Ŵ is non-negative, W and W̄ are

row-stochastic and hence µ1 = 1, and from (A.22)

Ŵe = (1− β)W̄e = (1− β)e (A.23)

Hence, µ1(Ŵ ) = (1 − β) is the leading eigenvalue of Ŵ and since vTj Ŵ = vTjW = µjvTj for

non-zero eigenvalues of W , it follows µ2(W ) = µ2(Ŵ ) ≤ 1− β.
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