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sider an endogenous model of opinion formation where agents com-

promise between respecting their own personal prejudice and con-

forming to the opinions held by others with whom they share close

ties. We quantify the extent of equilibrium disagreement and show

that its magnitude increases with the intensities of prejudice and

group cohesion. Similarly, the speed of learning is a logarithmic

function of the intensities of prejudice and group cohesion.
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An active line of research in economics and sociology examines how people, connected through

a social network, form opinions through a form of repeated averaging.1 This line of research

builds on the canonical model of DeGroot (1974)—the DeGroot model hereafter—and focuses

on establishing a set of general conditions under which a group of agents converge to a state of

consensus. However, ranging from financial markets, political institutions and various organiza-

tional settings, a consensus is rarely reached. The predominance of disagreement is even more

pronounced across groups with differing attributes, interests and ideologies (Mutz, 2002; Huck-

feldt, Johnson and Sprague, 2004; Grönlund, Herne and Setälä, 2015).2 Despite this empirical

evidence, there is limited theoretical literature on how the extent of cohesion within subgroups

impacts public disagreement.

This paper aims to: (a) define a quantitative measure for the extent of disagreement in

∗ University of Cape Town, Private Bag X3, Rondebosch, 7701 Cape Town, daniel.opolot@uct.ac.za. This research was
conducted during the time I spent at the University of Cape Town as a URC Postdoctoral Research Fellow. This paper
has benefited from comments by Suraj Shekhar, Co-Pierre Georg and Michael Rose. I also acknowledge comments from
the seminar participants at the School of Economics and AIFMRM – University of Cape Town. For all the help and advice
that I have received from others, the usual disclaimer applies.

1For example DeMarzo, Vayanos and Zwiebel (2003), Golub and Jackson (2010), Acemoglu, Ozdaglar and Parande-
hGheibi (2010), and Jackson (2010) for a survey of the literature.

2For example, in 2009, over 97% of climate scientists, 82% of the overall scientific community and 58% of the American
public believed that human activity contributed to global temperature changes (Doran and Zimmerman, 2009); and in
March 2006, 41% of Republicans and 7% Democrats believed that Iraq had weapons of mass destruction just before the
2003 (World Public Opinion, 2006). This kind of heterogeneity in opinions between subgroups is predominant across a
range of factual issues.
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a population and the intensity of group cohesion; (b) examine how group cohesion impacts

the magnitude of disagreement and the rate at which it decays/grows over time in models of

learning by averaging. To do so, we revisit a sociological model of learning by Friedkin and

Johnsen (1990)—Friedkin-Johnsen model hereafter—that is known to generate disagreement in

equilibrium. We first demonstrate that the Friedkin-Johnsen model coincides with an economic

model of best-response dynamics in which agents compromise between respecting their own

personal prejudice—generally understood as a set of preconceived and inflexible opinions—

and forming beliefs in line with those held by others with whom they share close ties. This

interpretation is also consistent with research in psychology showing that some attitudes are

resistant to change. This component of attitudes may in part be heritable and inculcated

through culturalization (Tesser, 1993); stored in memory and activated automatically with

little conscious control (Fazio, 1986; Houston and Fazio, 1989).3

To capture the notion of cohesive subgroups, we consider a learning process in which agents

interact through a social network. The network captures relationships such as family and

friendship ties, media-audience relations and ties based on political and religious orientation,

social class and racial relations. Real-world networks are known to exhibit segregated pat-

terns (McPherson, Smith-Lovin and Cook, 2001; McPherson, Smith-Lovin and Brashears, 2006;

DiPrete et al., 2011; Del Vicario et al., 2016). We define cohesive subgroups based on such segre-

gation patterns. Specifically, a subgroup of agents is cohesive if every member of the group has

more than half of her interactions with other members of the group. We define the intensity of

cohesion of a given subgroup as the relative total weight of interactions among group members,

to the total weight of all interactions of group members. The overall intensity of group cohesion

for a given network is then the sum of intensities of cohesion of all identifiable disjoint cohesive

subgroups. Thus, a network with a high overall intensity of group cohesion is highly segregated.

To quantify the extent of disagreement, we define the magnitude of disagreement as the

distance between the vector of equilibrium opinions and the vector of opinions describing the

expected consensus. Recognizing that the primary cause of disagreement in the model is preju-

dice, the expected consensus vector is the vector of equilibrium opinions in an identical model of

learning but without prejudice. This measure of the magnitude of disagreement is suitable for

policy makers or planners who aim to implement policies to reduce or eradicate disagreement

on specific issues (e.g. on public programs such as vaccination, and on environmental, social,

political and economic policies). Such policies would directly or indirectly reduce the extent of

prejudice, which ensures that the vector of equilibrium opinions is very close to the expected

3Further empirical and experimental evidence in support of this framework includes Kahan et al. (2012) and Kahan
et al. (2017); and Wilson, Lindsey and Schooler (2000) provides a survey of the related literature in psychology. Kahan et al.
(2012) and Kahan et al. (2017) specifically show that disagreement arises from the conflict of interest between conforming
ones beliefs to their political outlook, and to the beliefs held by others with whom they share close ties.
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equilibrium consensus vector. In this context, the magnitude of disagreement measures the

costs associated with implementing policies that steer the population close to a consensus.

We derive bounds for the magnitude of disagreement in terms of the overall intensity of

group cohesion and the intensity of prejudice. The bounds are increasing functions of the

intensities of prejudice and group cohesion. Group cohesion, however, only acts to reinforce

the effects of prejudice and is not the primary source of disagreement. That is, even in the

absence of cohesive subgroups, disagreement can persist in equilibrium provided the intensity

of prejudice is non-zero. From a policy perspective however, any policies that increase inter-

group interactions can still help reduce the extent of disagreement across groups. Moreover,

there is empirical evidence suggesting that such policies also have indirect positive effects on the

extent of prejudice; that is, they reduce the extent of prejudice (Masson and Verkuyten, 1993;

Pettigrew and Tropp, 2006). Thus, policies that directly increase intergroup contact have a

larger impact in reducing disagreement compared to educational policies that do so by directly

targeting individual prejudice (Hogan and Mallott, 2005; Kulik and Roberson, 2008).

Our findings offer an alternative explanation to the recent debate on political polarization in

the American public. The Pew Research Centre for example documents ideological polarization

along party lines (i.e. Republicans and Democrats), which is also reflected by the polariza-

tion in the U.S. Congress (Neal, 2018).4 Our findings suggest that such polarization, which is

equivalent to an increase in the magnitude of disagreement over time, may be a result of op-

posing subgroups becoming more cohesive, leading to lesser direct interaction/dialogue between

Democrats and Republicans. Indeed, there is empirical evidence of increased levels of intensity

of within subgroup cohesion for both Republicans and Democrats. The Pew Research Centre

survey finds that 63% of consistent conservatives and 49% of consistent liberals say most of

their close friends share their political views; and that 50% and 35% of people on the right and

left respectively say it is important to them to live in a place where most people share their

political views. These segregation patterns based on political views are even stronger in online

social networks (Garrett, 2009; Del Vicario et al., 2016).

We also derive bounds for the speed of learning. We define the convergence time as the

time it takes the learning process to converge to equilibrium. We show that the bounds for

the convergence time decrease logarithmically with the intensity of prejudice. That is, when

agents place more weight to their preconceived beliefs, there is lesser opinion exchange and the

learning process settles to equilibrium fast. The bounds for convergence time however increase

logarithmically with one minus the intensity of group cohesion. Here, higher intensity of group

4The Pew Research Centre surveys find that “the overall share of Americans who express consistently conservative or
consistently liberal opinions has doubled over the past two decades from 10% to 21%. And ideological thinking is now
much more closely aligned with partisanship than in the past. As a result, ideological overlap between the two parties has
diminished: Today, 92% of Republicans are to the right of the median Democrat, and 94% of Democrats are to the left of
the median Republican.”
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cohesion acts as a bottleneck for the exchange of opinions across subgroups, leading to slow

convergence.

There are two implications of these findings. The first concerns the optimal persuasion-

airtime allocation: for example, airtime allocation in political campaigns, court trials, and

public programs campaigns. Persuasion-airtime is costly. If the objective of a political or

public program campaign is to bring about a consensus, it is intuitive to think that the more

airtime allocated, the better the outcome in terms of the proportion of the population that

gets persuaded. Our findings suggest that in highly prejudiced groups, people make up their

minds quickly (i.e. equilibrium is reached fast) and no amount of extra persuasion can help

change their decisions; unless of course the extra persuasion is meant to change their prejudices.

Thus, extended persuasion-airtime in such situations becomes a waste of resources. Second,

our findings highlight the difference in convergence rates across different models of learning

by averaging. These differences can thus be used in lab and field experiments to distinguish

between various models.

Our paper contributes to a small but growing literature on disagreement (Friedkin and

Johnsen, 1990; Krause, 2000; Hegselmann, Krause et al., 2002; Acemoğlu et al., 2013; Bindel,

Kleinberg and Oren, 2015; Melguizo, 2016). Krause (2000) and Hegselmann, Krause et al.

(2002) study variations of the Friedkin-Johnsen model and focus on establishing convergence

results. They find that disagreement persists in equilibrium just as in the Friedkin-Johnsen

model. Bindel, Kleinberg and Oren (2015) study the price of disagreement (i.e. the ratio of the

total payoff in equilibrium to the total payoff at the social optimum) in the Friedkin-Johnsen

model and examine the effects of different network structures. Melguizo (2016) studies a net-

work formation model where agents rewire their links based on how close their opinions and

types are. This model generates an equilibrium network structure that is segregated based on

differences in opinions. Acemoğlu et al. (2013) shows that stubborn agents can be a source of

disagreement in a random matching model. Except for Melguizo (2016), all the aforementioned

papers thus study variations of the Friedkin-Johnsen model and focus on examining the struc-

ture of equilibrium opinions. The present paper instead focuses on characterising the magnitude

and dynamics of disagreement and how they depend on group cohesion.

A more closely related paper is Golub and Jackson (2012) who examine the effect of ho-

mophily—the tendency of individuals to associate disproportionately with others who are simi-

lar to themselves—on the speed of learning in the DeGroot model. Our measure of the intensity

of group cohesion however differs from the measure of spectral homophily—the second largest

eigenvalue of the interaction matrix—adopted in Golub and Jackson (2012). As we will show,

the two measures, the second largest eigenvalue of the network and intensity of group cohesion,

are directly related only under some restrictions on the network structure. More importantly,
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however, our measure of intensity of group cohesion is very intuitive and easily computable

from data, making it easily applicable to empirical analysis. Another fundamental difference

with our paper is that we focus on finite deterministic networks and Golub and Jackson (2012)

instead focus on random infinite networks. Since eigenvalue spectra of matrices, and hence

spectral homophily, are generally very sensitive to matrix operations, the results for infinite

random networks are not directly generalizable to finite deterministic networks.

The remainder of the paper is organized as follows. Section I outlines the model of opinion

formation with prejudices. Section II quantifies disagreement and derives bounds for the mag-

nitude of disagreement. Section III characterizes the speed of learning and Section IV offers

concluding remarks. Technical proofs are relegated to the Appendix.

I. A model of opinion formation with prejudices

A. Agents and interactions

We consider a society of finite size denoted by a set N = {1, 2, · · · , n}, where individuals

interact through a social network. For each agent, a neighbourhood is the set of other agents

(e.g. family, friends, colleagues, e.t.c) they interact with and regularly exchange ideas. The

interactions are summarized by an n× n non-negative interaction matrix W , whereby wij > 0

indicates the weight that i attaches to j’ opinions. Interactions are directed, so that wij > 0

need not imply wji > 0, or equality between wij and wji. We assume that W is row-stochastic,

which means that an agent’s interactions with her neighbours are normalized to sum to one.

Relaxing this assumption does not impact the results qualitatively but affects whether the

learning process converges. We discuss, in Section II, additional restrictions on the network

structure that are sufficient for the validity of our results. We write Ni for the set of neighbours

of i and di for its cardinality.

B. Prejudice and the cost of miscoordination

We model opinion formation as a learning process where agents repeatedly minimize the

cost of miscoordination. When interacting with others, an agent’s behaviour is driven by two

competing motives. While an agent wants to agree with her personal long-held opinions, her

utility depends on the degree to which her opinion coordinates with those held by others with

whom she shares close ties. We interpret long-held opinions as prejudice, defined as a set of

preconceived and inflexible opinions or beliefs about individual attributes, group behaviour or

government policies and public programs. We interpret inflexibility of prejudices to imply that

although they may change, they change more slowly compared to the rate at which overall

opinions change due to learning from others. There is evidence in psychology literature showing



6

that some attitudes/beliefs are resistant to change and may in part be heritable (Tesser, 1993).

That is, inculcated through culturalization. This component of attitudes is stored in memory

and activated automatically with little conscious control (Fazio, 1986; Houston and Fazio, 1989).

As individuals adjust their attitudes through learning, the inflexible beliefs are not completely

erased (Wilson, Lindsey and Schooler, 2000).

The desire to coordinate ones opinion and behaviour with that of ones neighbours is driven by

individual desire for social conformism. Since the work of Asch and Guetzkow (1951) on social

pressure, individual desire for social conformism is by now a well-studied phenomenon. More

recently, Salganik, Dodds and Watts (2006) find evidence of conformity in individual taste in

music, reflecting individual opinions about what constitutes good music. In economics, social

conformism has been observed in work habits and effort exerted (e.g. Falk and Ichino (2006),

Chen et al. (2010), Zafar (2011) and Abeler et al. (2011)), and participation in public good

provision (Carpenter, 2004).

Our model is particularly in line with the empirical evidence in Kahan et al. (2012) and

Kahan et al. (2017), showing that the observed patterns of disagreement regarding the role of

human activity on climate change, results from the conflict of interest between conforming ones

beliefs to their political outlook (which is representative of ones prejudices), and to the beliefs

held by others with whom they share close ties. We then suppose that when adjusting their

opinions, agents compromise between respecting their own personal prejudice, and conforming

their opinions to those held by others with whom they share close ties.

To formalize these ideas, let pi and p̄i be the opinion and the extent of prejudice of agent

i respectively. We assume that pi ∈ R+, that is, unidimensional and represented by a posi-

tive real number. This assumption is consistent with empirical evidence suggesting that while

individuals have opinions on many issues, spanning domains such as politics, lifestyle and the

economy, an individuals opinions on all dimensions can be described using a unidimensional

spectrum. Poole and Daniels (1985) and Ansolabehere, Rodden and Snyder (2008) find that

the voting behaviour of both legislators and individual voters can be explained by a single

liberal-conservative dimension. Following in a similar line of argument, we assume that per-

sonal prejudices can also be described using a unidimensional spectrum, and more specifically,

it takes values in the range [0, 1]. For any issue, say individual attribute, group behaviour, or

government policy and public program, a value of p̄i = 1 means that agent i is fully prejudiced

towards an issue, and a value of p̄i = 0 means i is not prejudiced. A value between zero and one

then means that an agent is partially prejudiced. In situations where agents hold prejudices

on many related issues, p̄i is then a unidimensional parameter capturing the overall or average

prejudice of an agent. The assumption regarding the range of values of p̄i does not affect our

results in a qualitative sense. Thus, in situations where it is suitable, it is feasible to assume
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p̄i ∈ [−1, 1] with −1 representing a fully negatively prejudiced agent, 1 for a fully positively

prejudiced agent, zero for no prejudice, and any other value in-between means an agent is only

partial prejudiced.

Let p and p̄ denote the vectors of opinions and prejudices respectively, and write p−i as the

vector of opinions with i’s opinion excluded. Each agent minimizes the cost Ci(pi,p−i, p̄i) of

mis-coordinating her opinion against her personal prejudice and the opinions of her neighbours.

That is

(1) Ci(pi,p−i, p̄i) = −λi
n∑
j=1

wij(pj − pi)2 − (1− λi)(pi − p̄i)2

where λi is the intensity with which i conforms to the opinions of her neighbours; as such, we

interpret 1− λi as the intensity with which i conforms to her prejudice, or simply the intensity

of prejudice. The first order condition to (1) is

(2) pi = −λi
n∑
j=1

wijpj + (1− λi)p̄i

Although we focus on a model of opinion formation, the cost function in (1) admits a game

theoretic interpretation where pi is i’s action or effort and p̄i is i’s preference. Under this

interpretation, an agent minimizes the cost of mis-coordinating her actions against her personal

preference and that against the actions of her neighbours. Our model and results can thus be

interpreted as a model of evolution of behaviour in the presence of relatively static preferences.

C. Evolution of opinions

By definition, prejudices are inflexible or change very slowly compared to the rate at which

overall opinions are updated. That is, the process of learning by averaging reaches equilibrium

before prejudices are updated. Here, we also assume that the network structure does not change

at the same rate as that at which opinions are updated.

We can thus think of the overall dynamics of learning to be unfolding on two discrete time

scales demonstrated in Figure 1. The first time frame t ∈ {0, 1, 2, · · · , T}, represents the time

intervals at which agents update their opinions due to learning from neighbours. Within this

time frame, the network structure, vector of prejudices and intensities of prejudice are all either

constant or change at negligible rates. The final period T in this time frame represents the time

at which the learning process reaches equilibrium; hence, T varies depending on the network

structure and intensities of prejudice—later in the paper, we define T as a convergence time and

examine how it depends on the network structure (intensities of group cohesion) and prejudices
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t=0 t=1 t=T

r=0 r=2

t=T-1 t=T

r=1

t=1 t=T-1

Figure 1. : Time scales for evolution of opinions and network structure.

(intensities of prejudice). The second time scale is r ∈ {0, 1, 2, · · · , R}, which is the time

frame at which the network structure and/or prejudices can significantly change. Once either

network structure or prejudices change, a new equilibrium vector of opinions will be reached.

Since the length of time, T , at which the evolutionary process converges within the time frame

{0, 1, 2, · · · , T} depends on the structures of the network and prejudices, it must be a function

of r ∈ {0, 1, 2, · · · , R}; that is, T := T (r).

Within t ∈ {0, 1, 2, · · · , T (r)}, each agent i updates her opinion myopically in accordance with

the optimal value of pi in (2). For a given r ∈ {0, 1, 2, · · · , R}, let pi(t; r) and p(t; r) denote pi

and p respective at time t. Then from (2), agent i’s opinion at t is given by

(3) pi(t; r) = −λi(r)
n∑
j=1

wij(r)pj(t− 1; r) + (1− λi(r))p̄i(r) for i = 1, · · · , n.

Let Λ(r) be an n × n diagonal matrix with entries λii(r) = λi(r) and zero otherwise. Let also

I denote an n× n identity matrix. Then the system (3) can be expressed in matrix form as

(4) p(t; r) = Λ(r)W (r)p(t− 1; r) + (I − Λ(r))p̄(r)

The system of equations in (4) describe a simultaneous evolution of individual opinions where

agents take weighted averages of neighbours’ opinions and add them to their static prejudices.

The model of evolution of opinions through the system described by (4) coincides with the

Friedkin-Johnsen model of opinion formation. Friedkin and Johnsen (1990) start their analysis

from (3), and interpret p̄i as an initial opinion. They then interpret the second term on the

right hand side of (3) as an exogenous influence on an agents opinion by the conditions that

have formed her initial opinions. Friedkin and Johnsen (1990) then use this framework to show

that disagreement persists in the long-run. We have instead motivated (4) as resulting from an

endogenous best-response dynamic process.

To examine the dynamics of disagreement and the convergence rates for the evolutionary
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process (4), we first fix r ∈ {0, 1, 2, · · · , R} and derive the expressions for the magnitude of

disagreement and convergence rate over the time frame {0, 1, 2, · · · , T (r)}. Thus, we drop

argument r from the variables W , Λ and p̄ so that (4) becomes.

(5) p(t) = ΛWp(t− 1) + (I − Λ)p̄

We then perform comparative statics as a way of examining the effects of varying W , Λ and p̄

over the time frame {0, 1, 2, · · · , R}.

D. Convergence and equilibrium opinions

The dynamic system in (5) is convergent and stable if for any vector of prejudice p̄ and initial

opinions p(0), there exist a unique vector of opinions p∗ = limt→∞ p(t), whereby each p∗i for

all i is finite. The vector p∗ represents equilibrium opinions. Note that p∗ is defined over an

infinite limit of t. But since the population size is finite, and as we show in Section III, if (5)

is convergent, then it converges to equilibrium opinions within a finite time, T (r). Thus, given

r ∈ {0, 1, 2, · · · , R}, we say that (5) is convergent and stable if

p∗ = lim
t→∞

p(t) ≡ lim
t→T (r)

p(t)

From Parsegov et al. (2017, Theorem 1 & Corollary 1), the sufficient conditions for (5) to be

convergent and stable are for either 0 ≤ λi < 1 for all i, or Λ 6= 1 (i.e. there exists at least

one i ∈ N for whom λi < 1) and W is strongly connected. An interaction matrix W , and hence

the associated network structure, is strongly connected if for every pair of agents i and j, there

exists a path of links connecting i to j and vice versa. Thus, by definition, if W is strongly

connected, then it is also irreducible. For (5) to be convergent and stable, it is then sufficient

either for all agents to be prejudiced or a few agents to be prejudiced and W to be strongly

connected. When either of these conditions are satisfied, the equilibrium vector p∗ is given by5

(6) p∗ = (I − ΛW )−1 (I − Λ)p̄

Based on the above sufficient conditions for convergence, we make the following three assump-

tions for the remainder of the paper:

(i) All agents are prejudiced and λi = λ for all i ∈ N .

5From (5) we see that the equilibrium vector p∗ is given by p∗ = ΛWp∗+(I−Λ)p̄, which yields p∗ = (I − ΛW )−1 (I−
Λ)p̄.
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(ii) The network structure is strongly connected so that W is irreducible; we also assume that

W is aperiodic.

(iii) The vector of prejudice p̄ = p(0).

Note that the first part of assumption (i) (i.e. requiring all agents to be prejudiced) is

sufficient for (5) to be convergent. The second part of assumption (i) (i.e. requiring the

intensity of prejudice to be identical for all agents) is for analytical simplicity. It ensures that

we can derive intuitive analytical results on the effect of the networks structure and the intensity

of prejudice on the extent of disagreement. Assuming heterogeneous prejudices complicates the

analysis without much added value with regards to qualitative findings. Assumption (ii) is

also for analytical simplicity and assuming otherwise does not change the results qualitatively.

Strong connectivity of the network, and hence irreducibility, together with aperiodicity of W

puts restrictions on the structure of the eigenvalue spectrum of W .6 It ensures that the leading

eigenvalue of W is one and all other eigenvalues are less than one. Both conditions simplify

analysis in the next sections.

Assumption (iii) states that the vector of prejudices is equivalent to the vector of initial

opinions. This assumption is reasonable because individual prejudices are formed by some

exogenous conditions that influenced an individual or a group of individuals in the past. Since

the vectors of prejudices and initial opinions store information about an individual’s or a group’s

history, it is reasonable to assume equivalence between them.

II. Quantifying disagreement

To define an appropriate measure for the extent of disagreement, it helps to first examine

the primary source of equilibrium disagreement in model (5). Disagreement is said to exist in

equilibrium if there exists at least one pair of agents i and j for whom p∗i 6= p∗j . A consensus,

per contra, occurs if p∗i = p∗j for all pairs i, j ∈ N .7 A close examination of the structure

of the dynamic system (5) and equilibrium opinions in (6) reveals that the primary source of

disagreement is prejudice. Specifically, in the absence of prejudice, (i.e. when λ = 1), (5)

reduces to the DeGroot model of opinion formation, which is known to converge to a consensus

(DeGroot, 1974).8

Example 1: As a demonstration, Figure 2 plots evolution of opinions of four agents whose

6Aperiodicity ensures that no cycles exist within a strongly connected subgroup of agents. For example, if a cycle exists
among a group of agents {i, j, k}, then the interactions are of the form i→ j → k → i. In such situations, agents within a
cycle alternate in adopting each others opinions. The process may thus fail to converge, especially in the case where λ = 1.

7Note that these definitions can be extended to subgroups of agents; in which case, a subgroup of agents C ⊂ N reaches
a consensus if p∗i = p∗j for all pairs i, j ∈ C, and disagreement if p∗i 6= p∗j . Here, we stick to defining disagreement at the

level of the entire population.
8Specifically, the DeGroot model converges to a consensus provided the network does not consist of cycles that lead

agents to alternate in adopting each other’s opinions. In the presence of prejudices, disagreement persists in equilibrium
regardless of the network structure.
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interactions are depicted in (7). Starting from Figure 2 (a), where λ = 1, to Figure 2 (d) where

λ = 0.2, the equilibrium behaviour evolves from a consensus, in which all agents adopt agent

2’s initial opinion (prejudice), to a more heterogeneous behaviour with different equilibrium

opinions. The smaller λ, the larger the extent of disagreement among agents. The primary

source of disagreement in model (5) is thus prejudice and the network structure only acts to

reinforce the effects of prejudice.

(7) W =


0.2 0.14 0.36 0.3

0.0 1.0 0.0 0.0

0.35 0.1 0.15 0.4

0.18 0.45 0.27 0.1


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(a) λ = 1
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(c) λ = 0.5
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(d) λ = 0.2

Figure 2. : Each subfigure, from (a) to (d), graphs the evolution of opinions over time, where
in Figure (a), λ = 1.0; Figure (b), λ = 0.8; Figure (c), λ = 0.5; and Figure (d), λ = 0.2. The
initial vector of opinions in all cases is p(0) = (0, 1, 1, 0).

We exploit this relationship between disagreement and prejudice in defining the magnitude

of disagreement. Specifically, given the interaction matrix W , we define the magnitude of

disagreement at a given level of intensity of prejudice λ as the distance between the vector of

equilibrium opinions at λ, and the expected consensus vector. For a given interaction matrix W ,

the expected consensus vector corresponds to the vector of equilibrium opinions when λ = 1.
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Let c be the expected consensus vector. Then the magnitude of disagreement D(W ;λ) is defined

as follows.

DEFINITION 1: Given an equilibrium vector of opinions p∗ in the model of opinion formation

with prejudice, the magnitude of equilibrium disagreement D(W ;λ) under interaction matrix W

and intensity of prejudice λ is defined for the time frame {0, 1, 2, · · · , T (r)} as

(8) D(W ;λ) = sup
p̄∈[0,1]n

‖p∗ − c‖v = sup
p̄∈[0,1]n

(
n∑
i=1

vi (p∗i − ci)
2

) 1
2

where v is a normalized vector, that is
∑

i∈N vi = 1, representing the relative importance of

each agent’s contribution to group disagreement.

Note that D(W ;λ) is already a function of the network structure and intensity of prejudice,

which are assumed to be constant within a given r ∈ {0, 1, 2, · · · , R}. Thus, it is not necessary

to include r in the argument of D(W ;λ). To examine the dynamics of D(W ;λ) over the time

frame {0, 1, 2, · · · , R}, we use comparative statics to examine how D(W ;λ) varies with W and

λ.

Depending on the context, there are alternative ways of quantifying disagreement. For exam-

ple, if the focus is on the disutility that individuals incur from disagreeing with their neighbours,

then the suitable measure should take into account the deviations of individual equilibrium opin-

ions from that of the neighbours.9 We are instead interested in quantifying disagreement from

the point of view of a planner or policy maker aiming to reduce the extent of disagreement

among group members and society in general. Under such circumstances, the target vector of

equilibrium opinions for the policy maker is the consensus vector. That is, the result of any

policies that directly or indirectly reduce the intensity of prejudice is to shift the vector of equi-

librium opinions close to c. The magnitude of disagreement, D(W ;λ), thus measures the costs

associated with implementation of policies that steer the population to a consensus.

We highlight two aspects of the expressions in (8). The first concerns the supremum over all

possible vectors of prejudices. The vector of equilibrium opinions p∗ and the consensus vector

c are both functions of the vector of prejudices. This implies that the vector of prejudices can

be suitably chosen so that p∗ is close or identical to c. We aim to derive bounds for the worst

possible scenario; that is, we consider a choice of the vector of prejudices that produces the

largest values of the magnitude of disagreement given the network structure and intensity of

prejudice. The direct way of achieving this is to take the supremum over all possible vectors of

prejudices.

9For example, disagreement could be defined as D(W ;λ) =
∑
i∈N

∑
j∈Ni

(p∗j − p∗i )2, where each (p∗j − p∗i )2 is the

disutility that i incurs from having an equilibrium opinion that is not aligned with j’s equilibrium opinion.
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The second aspect concerns the weighting vector v. This vector ensures that each agent’s

contribution to overall disagreement is weighted by vi. A natural candidate for the choice of v

is the vector of influences that agents command in the network, and the influence they exert on

each others equilibrium opinions. For example, when λ > 0, we see from (6) that the vector of

influence, generally referred to as Bonacich centrality (Bonacich, 1987),10 is given by

(9) b(λ) = (1− λ)
[
(I − λW )−1

]
e = (1− λ)

[
+∞∑
τ=0

(λW )τ

]
e

where e is a column vector of ones. The Bonacich centrality accords each player a level of influ-

ence that is proportional to the number of connections she has, and the number of connections

her neighbours have, and so on. When λ = 1, the vector of Bonacich centralities reduces to

eigenvector centralities π, so called because it is equivalent to the left eigenvector that corre-

sponds to the leading eigenvalue of W .11 Thus, when λ = 1, then p∗ = c so that equilibrium

opinions of all agents are identical and given by ci =
∑n

j=1 πjpj(0). The vector of eigenvector

centralities thus describes the influence each agent commands in the network (since it excludes

the contribution of individual prejudice). For the remainder of the paper, we assume, without

loss of generality, that v = π.

We aim to establish bounds for the magnitude of disagreement in terms of intensity of preju-

dice and parameters related to the network structure. We identify group cohesion as the main

property of the network that amplifies the magnitude of disagreement. A subgroup of agents

is cohesive if every member of the subgroup has more than half of her interactions with other

members of the subgroup. That is, let Lk ⊂ N be a subset of N ; then Lk is said to be cohesive

if for every i ∈ Lk,

(10)
∑
j∈Lk

wij >
1

2

∑
l∈N

wil

Every network structure consists of at least one cohesive subgroup Lk ⊆ N for k = 1, 2, · · · ,K,

where Lk ∪ Ll = ∅ for all pairs of subgroups. A complete network, where each agent interacts

with every other, is one of the special cases with only one cohesive subgroup. Most other

network structure however contain at least two disjoint cohesive subgroups. For each W , let

L(W ), or simply L where no confusion arises, be the set of all its cohesive subgroups; and let

10The Bonacich centrality is the main network measure that determines the equilibrium behaviour of most dynamic
processes on networks. For example, Ballester, Calvó-Armengol and Zenou (2006) show that equilibrium behaviour in
network games depends on Bonacich centralities.

11To see why, first note that when λ = 1 (4) reduces to p(t) = W tp(0) so that the vector of equilibrium opinions
becomes p∗ = limt→∞W tp(0). Since this model converges to a consensus, the limit limt→∞W t = Π = eπT , where π is
the vector of equilibrium influence. Thus, p∗ = eπTp(0), which implies that p∗i =

∑n
j=1 πjpj(0). Since Π is derived by

infinitely iterating W t, then Πt = Π and Π = ΠW . This implies that for each influence vector π, πT = πTW , and hence
π is a left eigenvector of W corresponding to the leading eigenvalue λ1 = 1.
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nk be the cardinality of each Lk ∈ L. We define the intensity of cohesion ι(Lk) of subgroup

Lk as the relative total weight of interactions among members of Lk to the total weight of all

interactions of members of Lk; that is,

(11) ι(Lk) =

∑
i∈Lk

∑
j∈Lk wij∑

i∈Lk
∑

j∈N wij
=

1

nk

∑
i∈Lk

∑
j∈Lk

wij

where the second equality on the right hand side of (11) follows from the fact that W is a

row stochastic matrix so that
∑

j∈N wij = 1. For each Lk, ι(Lk) is in the interval (1
2 , 1). The

larger ι(Lk), the larger the total weight of interactions among group members compared to

interactions with non-group members, and hence, the higher the level of cohesion among group

members. Given all cohesive subgroups of W , we define the overall intensity of group cohesion

ι(W ) of W as the sum of all intensities of cohesion of all subgroups:

ι(W ) =
∑

Lk∈L(W )

ι(Lk).

The following additional definitions and notations are used in the analysis that follows. We

define W̄ as an n × K matrix with each element w̄il of W̄ as the total weight that agent i

attaches to subgroup Ll; that is, w̄il =
∑

j∈Ll wij . We also define a matrix W̃ with each

element w̃kl of W̃ as the total weight that agents in subgroup Lk attach to subgroup Ll; that

is, w̃kl = 1
nk

∑
i∈Lk

∑
j∈Ll wij . When compared to (11), we see that the diagonal elements of W̃

are the respective intensities of subgroup cohesion, and the trace of W̃ (i.e. the sum of diagonal

elements of W̃ ) is equivalent to ι(W ).

PROPOSITION 1: Let W be strongly connected and aperiodic. In addition, let W contain at

least two cohesive subgroups where w̄il = w̄jl for all pairs i, j ∈ Lk and for each subgroup Ll;

and let W̃ be symmetric, that is, w̃kl = w̃lk for each pair Lk, Ll ∈ L. Then for an evolutionary

process described by (5), the magnitude of disagreement is bounded by

(12)

(
(1− λ)K

K − λ (2ι(W )−K)

)
≤ D(W ;λ) ≤ π−

1
2

min

(
1− λ

1− λ (2ι(W )− 1)

)

where πmin = mini∈N πi.

PROOF:

See Appendix A.A1

The proof of Proposition 1 proceeds in three steps, which in turn determine the stated condi-

tions for the validity of (12). The first step involves establishing the bounds for the magnitude

of disagreement in terms of the second largest eigenvalue of the interaction matrix. The corre-
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sponding conditions for the validity of results at this stage of the proof are, a strongly connected

and aperiodic interaction matrix. As discussed in Section I.D, these two assumptions ensure that

the eigenvalues of the interaction matrix are distinct, and hence, the second largest and small-

est eigenvalues of W are non-identical and less than one. This also ensures that the dynamics

process in (4) converges.

The second stage of the proof establishes the relationship between the second largest eigen-

value of the interaction matrix W and that of the inter-group interaction matrix W̃ . Recall that

the trace of W̃ defines the overall intensity of cohesion ι(W ) of subgroups. We can thus estab-

lish the relationship between the magnitude of disagreement and intensity of group cohesion by

exploiting the relationship between the eigenvalue spectrum of W̃ and its trace. We show that

the sufficient condition for the equivalence between the second largest eigenvalues of W and W̃

is for w̄il = w̄jl for all pairs i, j ∈ Lk and for each subgroup Ll ∈ L. For any pair of distinct

subgroups Ll and Lm, however, w̄iLl need not equal w̄iLm . That is, all agents belonging to the

same cohesive group attach the same weight to a given cohesive subgroup, but these weights

need not be identical across subgroups. Put differently, this condition requires agents that share

attributes to attach a similar weight to the opinion/behaviour of agents with specific attributes.

This is a reasonable assumption in situations where cohesive subgroups consist of agents with

similar attributes such as political orientation, religious views, social or income class and ethnic

groups.

The eigenvalue spectra of matrices are generally sensitive to matrix operations. The condition

discussed in the preceding paragraph ensures that the interaction matrix W can be collapsed

to W̃ without changing the eigenvalue spectrum. We perform a sensitivity analysis in Section

A.A2 and show that provided the deviation from the stated condition is not large, the deviation

of the second largest eigenvalue of W̃ from that of W is small. If the deviations are large,

then the second largest eigenvalues of W and W̃ need not be identical or close to identical.

Consequently, Proposition 1 need not hold.

The third stage of the proof leads to the third condition in Proposition 1: W̃ must be

symmetric; that is, w̃kl = w̃lk for each pair Lk, Ll ∈ L. This condition enables us to establish

the relationship between the second largest eigenvalue of W̃ and the overall intensity of group

cohesion ι(W ). We specifically use the results on bounds for eigenvalues using traces (Wolkowicz

and Styan, 1980). There are several successive papers since Wolkowicz and Styan (1980) (e.g.

Merikoski and Virtanen (1997)) that have established tighter bounds for eigenvalues in term of

a matrix trace but the respective expressions are cumbersome and do not improve the results

of Proposition 1 in a qualitative sense. A symmetric W̃ matrix implies that the links between

cohesive subgroups are undirected so that the weights that a pair of cohesive subgroups attach

to each other’s opinions are identical. It is possible to relax this assumption, but it comes at the
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cost of tighter bounds for the second largest eigenvalue of W̃ . Moreover, just as in the second

condition discussed above, it is a reasonable assumption in situations where cohesive subgroups

represent groups of agents with similar attributes.

From (12), we see that the lower and upper bounds for the magnitude of disagreement increase

with the intensities of prejudice (1−λ) and subgroups cohesion ι(W ). Consistent with Example 1

above, the primary source of disagreement is prejudice, whereby, the magnitude of disagreement

increases from zero, when the intensity of prejudice is zero, to the maximum possible value of

one when the intensity of prejudice is also one. The interaction structure only acts to reinforce

the effects of intensity of prejudice. That is, even in complete networks, where every agent

attaches the same weight to every other agent and the overall intensity of group cohesion is

zero, disagreement can persist in equilibrium provided the intensity of prejudice is non-zero.

Figure 3 captures this scenario. It plots the evolution of opinions for a complete network and

clearly depicts persistence of disagreement in equilibrium.

W =


0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25
0.25 0.25 0.25 0.25



0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0 agent1
agent2
agent3
agent4

Figure 3. : An example of an interaction structure in which every agent attaches the same weight to every other.

The figure on the right hand side plots the evolution of opinions for λ = 0.8 and the vector of prejudice/initial opinions

p(0) = (0, 1, 1, 0). Disagreement persists in the long-run where agents 2 and 3 converge to the same opinion of 0.6 and

agents 1 and 4 converge to the same opinion of 0.4.

The rates at which the bounds for the magnitude of disagreement increase with the intensities

of prejudice and group cohesion are not constant. Figure 4 demonstrate this relationship.

Clearly, the magnitude of disagreement is very sensitive to changes in intensity of group cohesion

at low levels of intensity of prejudice (i.e. when λ is large). And, the magnitude of disagreement

is very sensitive to changes in intensity of prejudice at high levels of intensity of group cohesion.

We highlight two implications of Proposition 1. First, Proposition 1 provides an alternative

explanation to the recent debate on political polarization in the American public. Polarization

is defined as the divergence of opinions over time. The Pew Research Centre for example docu-

ments ideological polarization along party lines (i.e. Republicans and Democrats). Specifically,

they find that “the overall share of Americans who express consistently conservative or consis-

tently liberal opinions has doubled over the past two decades from 10% to 21%. And ideological
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Figure 4. : The figure plots the magnitude of disagreement versus intensities of prejudice and
group cohesion using the expression of the lower bound in (12).

thinking is now much more closely aligned with partisanship than in the past. As a result,

ideological overlap between the two parties has diminished: Today, 92% of Republicans are to

the right of the median Democrat, and 94% of Democrats are to the left of the median Repub-

lican.” Neal (2018) also documents polarization patterns in the U.S Congress. Polarization in

the context of our model is equivalent to the growth of the magnitude of disagreement over the

time frame {0, 1, · · · , R}.

According to Proposition 1, as also depicted in Figure 4, increasing the intensity of group

cohesion over time, increases the magnitude of disagreement, and hence, leading to polarization

of opinions. Several surveys and empirical analysis document evidence of high levels of group

cohesion among Democrats and Republicans in recent years. For examples, The Pew Research

Centre survey finds that 63% of consistent conservatives and 49% of consistent liberals say most

of their close friends share their political views; and that 50% and 35% of people on the right

and left respectively say it is important to them to live in a place where most people share

their political views. Such segregation patterns are even stronger in online social networks

and appear in form of echo chambers” (Garrett, 2009; Del Vicario et al., 2016). The observed

political polarization could thus be a result of the opposing groups becoming more cohesive.

Second, the results of Proposition 1 offer insights for policy makers. There are two ways in

which a policy maker can reduce the extent of disagreement in the society: by reducing the in-

tensities of prejudice and group cohesion. According to several studies, individual prejudice can

be reduced through diversity education programs. For example, Hogan and Mallott (2005) show

that diversity courses in higher education were effective in improving students’ intergroup toler-

ance (see Kulik and Roberson (2008) for a review of the related literature). Besides educational

programs, research in social psychology and political science shows that policies that encourage

contact across cohesive subgroups also tend to indirectly reduce the level of prejudice in the
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society (Masson and Verkuyten, 1993; Pettigrew and Tropp, 2006; Mutz, 2002; Grönlund, Herne

and Setälä, 2015). Thus, policies and public programs aimed at fostering social, economic and

cultural integration, have a double positive impact in reducing the magnitude of disagreement.

The results in Proposition 1 are closely related to Golub and Jackson (2012), who show that

homophily—the tendency for agents to interact with those with whom they share attributes—

influences the speed of convergence in the DeGroot model. Golub and Jackson (2012) define

spectral homophily as the second largest eigenvalue of the interaction matrix describing inter-

subgroup interactions. To derive their results, Golub and Jackson (2012) consider a family of

networks formed through a random Bernoulli process so that every neighbour who is listened

to is weighted equally. Using mean-field approximation techniques, Golub and Jackson (2012)

show that as population size tends to infinity, the second largest eigenvalue of the entire network

coincides with spectral homophily.

As stated above, the eigenvalue spectra of matrices, and hence spectral homophily, are sen-

sitive to matrix operations. Thus, the results in Golub and Jackson (2012) need not directly

generalize beyond infinitely large random networks. In contrast, we define the intensity of group

cohesion, for finite networks, as the total weight that agents attach to fellow group members.

This measure is intuitive and easily computable from empirical data compared to spectral ho-

mophily. We also focus on finite deterministic networks, making our results directly applicable

to empirical analysis.

III. The speed of learning

For any model of learning, examining the convergence rate (speed of learning) is just as rele-

vant as examining the properties of equilibrium behaviour. It is very important to understand

whether the predicted equilibrium behaviour can be reached at the time scales of economic rel-

evance. In this section, in addition to this necessity, we demonstrate that the speed of learning

can also be used to distinguish between models of learning by averaging. Since disagreement in

the society about factual issues occurs more often than not, some papers have studied variations

of the DeGroot model so as to generate disagreement as an equilibrium behaviour (Acemoğlu

et al., 2013; Melguizo, 2016). It then remains to be empirically demonstrated which among the

existing models best fits reality.

From Example 1 above, given an interaction structure, the rate at which opinions converge

(i.e. the decay rate of disagreement) increases with the intensity of prejudice. Specifically, from

Figure 2, when λ = 0.2 opinions get close to equilibrium values in less than five steps of iteration.

When λ = 0.8, it takes at least 10 steps of iteration, and when λ = 1, it takes at least 20 steps.

The convergence rate also varies with the magnitude of the second largest eigenvalue of W ,

and hence with the overall intensity of group cohesion. Consider, for example, the interaction
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structures in Figures 2, 3 and 5 with the second largest eigenvalues of µ2 = 0.766, µ2 = 0

and µ2 = 0.2 respectively. Fixing λ = 0.8, the convergence rate decreases with the second

largest eigenvalue. We thus aim to derive the lower and upper bounds for the rate of decay of

disagreement as a function of the intensities of group cohesion and prejudice.

W =
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0.4 0. 0.4 0.2
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agent4

Figure 5. : The evolution of opinions for a cyclic interaction structure with the second largest eigenvalue of µ2 = 0.2.

We take λ = 0.8 and the vector of prejudice/initial opinions to be p(0) = (0, 1, 1, 0). Agents 2 and 3 converge to the same

opinion of 0.62 and agents 1 and 4 converge to the same opinion of 0.38.

We define the speed of convergence as the time it takes the learning process to get close to

equilibrium within the time frame {0, 1, · · · , T (r)}. For a fixed r ∈ {0, 1, · · · , R}, and hence

a fixed W , λ and p̄ = p̄(r), define the distance between the vector of opinions p(t) at t and

equilibrium vector of opinions p∗ as DE(W ;λ; p̄; t) = ‖p(t)− p∗‖v =
(∑n

i=1 vi (pi(t)− p∗i )
2
) 1

2
,

where as before, we take v = π. Since DE(W ;λ; p̄; t) is a function of the vector of prejudice

p̄, p̄ can be chosen in such a way that p(1), and hence p(t) for t ≥ 2, is close to p∗; under

this scenario, learning stops after a few steps. We consider the worst possible scenario by

taking a supremum over all possible vectors of prejudice/initial opinions, that is, DE(W ;λ; t) =

supp̄∈[0,1]n DE(W ;λ; p̄; t). We then define the convergence time CT (W ;λ; ε), for some small

real number ε > 0, as the time it takes for the distance DE(W ;λ; t) to get below ε.

DEFINITION 2: The convergence time CT (W ;λ; ε) to ε > 0 under interaction matrix W is

(13) CT (W ;λ; ε) = min{t : DE(W ;λ; t) < ε}

Note that the convergence time captures the decay rate of disagreement in that as the distance

between p(t) and p∗ tends to zero, the distance between p(t) and the expected consensus vector

c also tends to D(W ;λ)—the long-run/equilibrium magnitude of disagreement.

In analogy to time frame t ∈ {0, 1, 2, · · · , T (r)}, the convergence time is closely similar to

T (r). Specifically, the magnitude of the difference between CT (W ;λ; ε) and T (r) decreases
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with ε, and the two measures are exactly identical when ε = 0. The definition of convergence

time derives from the notion of mixing time, which is widely studied in the literature of Markov

chains.

As in the case for the dynamics of disagreement in Section II, we examine the dynamics of

the speed of learning over the time frame {0, 1, · · · , R} through comparative statics; that is, by

varying λ and W . The following proposition establishes the lower and upper bounds for the

convergence time.

PROPOSITION 2: Let W be strongly connected and aperiodic. The convergence time in model

(5) is bounded by

(14)

ln

(
ε (1− λ | µ2 |)
λ (1− | µ2 |)

)/
ln (λ | µ2 |) ≤ CT (W ;λ; ε) ≤ ln

επ 1
2
min (1− λ | µ2 |)

2− λ (1+ | µ2 |)

/ln (λ | µ2 |)

PROOF:

See Appendix A.A3

Proposition 2 shows that the convergence time decreases logarithmically with the intensity of

prejudice. This is consistent with the examples presented above, whereby, when the intensity of

prejudice is one (i.e. (1−λ) = 1), the learning process converges after one step of iteration, and

the number of iterations increase with λ. The reason being that as the intensity of prejudice

increases, agents place less and lesser weight on neighbours’ opinions. When (1−λ) = 1, agents

place zero weight on neighbours opinions, and hence, learning does not occur. The rate of

decrease is depicted in Figure 6 (a), which plots the lower bound in (14) against the intensity of

prejudice. As expected of logarithmic functions, the rate of decrease is stronger for lower values

of the intensity of prejudice.

These results have implications for optimal persuasion-airtime allocations. By persuasion-

airtime we mean, for example, airtime in political campaigns, court trials, and public programs

campaigns. Persuasion-airtime is costly. If the objective of a political or public program cam-

paign is to bring about a consensus, it is intuitive to think that the more airtime allocated, the

better the outcome in terms of the proportion of the population that gets persuaded. Propo-

sition 2 shows that in highly prejudiced groups, people make up their minds quickly and no

amount of extra persuasion can help change their decisions; unless of course the extra persuasion

is meant to change their prejudices.

Proposition 2 also states that the convergence time increases with the second largest eigenvalue

of the interaction matrix. The rate of increase is logarithmic in 1 − µ2(W ), so that the rate

is highest at higher values of µ2(W ). This relationship is depicted in Figure 6 (b), that plots

the convergence time against the second largest eigenvalue of W . A corollary to Proposition
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Figure 6. : The figure plots convergence time against the intensities of prejudice and the second
largest eigenvalue of the interaction matrix using the expression of the lower and upper bounds
in (14) respectively. We take ε = 0.001.

2 is that under the conditions stated in Proposition 1, the lower and upper bounds for the

convergence time are increasing functions of the intensity of group cohesion. Specifically, if

W consists of at least two cohesive subgroups whereby, w̄il = w̄jl for all pairs i, j ∈ Lk, and

that W̃ is symmetric, then µ2(W ) = µ2(W̃ ) such that
(

2ι(W )
K − 1

)
≤ µ2(W̃ ) ≤ 2ι(W )− 1 (see

Lemmas 4 and 3). The lower and upper bounds for the convergence time can thus be expressed

in terms of the overall intensity of group cohesion. And just as in the case of the second largest

eigenvalue of W , the convergence time increases with the overall intensity of group cohesion.

As a final remark, we can conclude from Proposition 2 that in the absence of prejudice

(i.e. λ = 1), which corresponds to the DeGroot learning model, the convergence time depends

only on the second largest eigenvalue of the interaction matrix. The differences between the

expressions for the convergence times can thus be used to differentiate between the DeGroot and

Freidkin-Johnsen models of learning, and other related variations. For example, in a variation

of the DeGroot model, according to which agents linearly combine their personal experiences

with the opinions of their neighbours, Jadbabaie, Molavi and Tahbaz-Salehi (2013) show that

the convergence time depends on agents’ eigenvector centralities. It is therefore feasible to

differentiate these two frameworks of learning but theoretically computing the rate of decay of

disagreement (i.e. p(t− 1)− p(t)) and fitting it to experimental data.

IV. Concluding remarks

The question of how peoples’ attitudes and behaviours evolve is at the centre of social and

behavioural sciences. The models of learning by averaging others’ opinions or behaviours, com-

monly known as näıve learning, have been instrumental in explaining the processes of opinion

formation and behavioural change. Empirical studies also suggest that people indeed tend to
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follow näıve rules of learning. The prediction of the canonical models of näıve learning is that

the society will converge to a consensus in the long-run. This prediction is however not con-

sistent with the observed persistence of disagreement in the society across factual issues. To

reconcile the discrepancies between theoretical predictions and empirical observation, some pa-

pers in the literature have come up with modifications of the canonical models of naive learning

that generate disagreement in equilibrium.

The objective of this paper has been to quantity the extent of disagreement and the speed of

learning in the Friedkin-Johnson model of opinion formation that is known to generate disagree-

ment in equilibrium. We start by demonstrating that the Friedkin-Johnson model coincides with

an endogenous model of opinion formation where agents compromise between respecting their

own personal prejudice and conforming their opinions to those held by others with whom they

share close ties. We showed that the intensity of prejudice and of group cohesion interactively

drive the extent of disagreement. We also demonstrate how the speed of learning can be used

as a mechanism for distinguishing different models of learning by averaging. One aspect that

is largely missing in the study of opinion and behaviour formation is empirical studies that at-

tempt to establish which among the existing models best describes reality. Finally, we discussed

policy implications of our findings.
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Grönlund, Kimmo, Kaisa Herne, and Maija Setälä. 2015. “Does enclave deliberation
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Mathematical Appendix

A1. Proof of Proposition 1

The proof of Proposition 1 is split into lemmas. Let 1 = µ1(W ) ≥ µ2(W ) ≥, · · · ,≥ µn(W )

represent the eigenvalues of W , and let µ∗(W ) = max{| µ2(W ) |, | µn(W ) |}. We start with

Lemmas 1 and 2 below that relate D(W ;λ) to λ and | µ2(W ) |.

LEMMA 1: Let W be strongly connected and aperiodic. Then supp̄∈[0,1]n
∥∥W tp̄−Πp̄

∥∥
π

is

bounded by

(A1) | µ2(W ) |t≤ sup
p̄∈[0,1]n

∥∥W tp̄−Πp̄
∥∥
π
≤ π−

1
2

min | µ2(W ) |t

where πmin = mini∈N πi.

PROOF:

The proof relies on results from Levin, Peres and Wilmer (2009, Lemmas 12.1 & 12.2). From

Section I.D, we restrict the interaction matrix W to be strongly connected (i.e irreducible) and

aperiodic. Thus, from Levin, Peres and Wilmer (2009, Lemma 12.1):
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(i) | µi(W ) |≤ 1 for all i = 1, · · · , n, and −1 is not an eigenvalue of W ;

(ii) The vector space of eigenvectors corresponding to the eigenvalue µ1(W ) = 1 is the one-

dimensional space generated by the column vector e := (1, 1, ..., 1)T .

Let π be the unique stationary distribution of the Markov chain p(t) = W tp(0), which also

means that π is the left eigenvector of W corresponding to the eigenvalue µ1(W ) = 1. By

the assumptions on W above (i.e. irreducibility and aperiodicity), π is unique; we can in turn

assume that W is reversible with respect to π. Define the inner product 〈x, r〉π for any two

vectors x and r in the vector space Rn as 〈x, r〉π =
∑n

i=1 viriπi; and where no confuses arises,

we write µi for µi(W ). It then follows from Levin, Peres and Wilmer (2009, Lemma 12.2) that:

(a) The inner product space (Rn, 〈 ., .〉π) has an orthonormal basis of real-valued eigenfunctions

{fi}ni=1 corresponding to real eigenvalues {µi}.

(b) The interaction matrix W can be decomposed as

(A2) wtjk = πk +
n∑
i=2

µtiπkfi(j)fi(k)

Statement (a) above implies that for any eigenfunctions fi and fj , we have 〈 fi, fi〉π = 1 and

〈 fi, fj〉π = 0. Statement (b) on the other hand leads to the following relations.

(A3)
wtjk
πk
− 1 =

n∑
i=2

µtifi(j)fi(k)

(A4) W tp̄ = Πp̄ +

n∑
i=2

µtifi

n∑
k=1

πkp̄kfi(k) = Πp̄ +

n∑
i=2

µti〈 fi, p̄〉πfi

Using these definitions and concepts, we can now derive the upper and lower bounds for

supp̄∈[0,1]n
∥∥W tp̄−Πp̄

∥∥
π
. For the upper bound, we have

∥∥W tp̄−Πp̄
∥∥2

π
=

∥∥∥∥∥
n∑
i=2

µti〈 fi, p̄〉πfi

∥∥∥∥∥
2

π

=

n∑
i=2

∥∥µti〈 fi, p̄〉πfi∥∥2

π
=

n∑
i=2

µ2t
i 〈 fi, p̄〉2π ‖fi‖

2
π(A5)

where the second equality of (A5) follows from the application of the Pythagorean law to

orthogonal vectors. That is, if {x1, · · · , xk} is an orthogonal set, then the Pythagorean Law

states that

‖x1 + · · ·+ xk‖2 = ‖x1‖2 + · · ·+ ‖xk‖2
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Note however that

‖fi‖2π =

n∑
j=1

πjf
2
i (j) = 〈 fi, fi〉π = 1

And

(A6) 〈 fi, p̄〉2π =

[
n∑
k=1

πkp̄kfi(k)

]2

≤ ‖fi‖2∞

[
n∑
k=1

πkp̄k

]2

where ‖fi‖∞ = maxk | fi(k) | is the infinity norm of fi. Taking a supremum over p̄ ∈ [0, 1]n

yields

sup
p̄∈[0,1]n

〈 fi, p̄〉2π ≤ ‖fi‖
2
∞

[
n∑
k=1

πk

]2

= ‖fi‖2∞

Substituting into (A5) yields

sup
p̄∈[0,1]n

∥∥W tp̄−Πp̄
∥∥2

π
≤

n∑
i=2

µ2t
i ‖fi‖

2
∞ ≤ µ

2t
∗

n∑
i=2

‖fi‖2∞(A7)

To derive expression for the summation on the right hand side of (A7), note that if δj(k)

is defined as δj(k) = 1 when j = k and zero otherwise, then δj can be written via basis

decomposition as

δj =
n∑
i=1

〈 δj , fi〉πfi =
n∑
i=1

fi(j)πjfi

We can in turn write πj as

πj = 〈 δj , δj〉π =

〈
n∑
i=1

fi(j)πjfi ,

n∑
i=1

fi(j)πjfi

〉
π

= π2
j

n∑
i=1

fi(j)
2

where the second equality follows from the fact that 〈 fi, fi〉π = 1. Hence,
∑n

i=1 fi(j)
2 = π−1

j

and
∑n

i=2 fi(j)
2 ≤ π−1

j ; consequently,
∑n

i=2 ‖fi‖
2
∞ ≤ π−1

min, where πmin = minj πj . Substituting

into (A7) and taking the square root of both sides yields the upper bounds

sup
p̄∈[0,1]n

∥∥W tp̄−Πp̄
∥∥
π
≤ π−

1
2

min | µ∗ |
t(A8)

But since | µ2(W ) |≥| µn(W ) | for most strongly connected and aperiodic networks, it follows

that supp̄∈[0,1]n
∥∥W tp̄−Πp̄

∥∥
π
≤ π−

1
2

min | µ2 |t.

To derive the lower bound, first note that substituting the first equality of (A6) into (A5)
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yields

∥∥W tp̄−Πp̄
∥∥2

π
=

n∑
i=2

µ2t
i 〈 fi, p̄〉2π(A9)

Without loss of generality, we can choose p̄ to be equal or parallel to f2 so that 〈 f2, p̄〉π = 1,

but for all fi 6= f2, we have 〈 fi, p̄〉π = 0. This way, (A9) reduces to

sup
p̄∈[0,1]n

∥∥W tp̄−Πp̄
∥∥
π
≥| µ2 |t(A10)

This completes the proof of Lemma 1.

LEMMA 2: Let W be strongly connected and aperiodic. Then D(W ;λ) is bounded by

(A11)

(
1− λ

1− λ | µ2 |

)
≤ D(W ;λ) ≤ π−

1
2

min

(
1− λ

1− λ | µ2 |

)

PROOF:

Recall from (6) that when λi = λ for all i ∈ N , then

(A12) p∗ = (1− λ)
[
(I − λW )−1

]
p̄ = (1− λ)

[
+∞∑
τ=0

(λW )τ

]
p̄ = (1− λ)

+∞∑
τ=0

λτW τ p̄

The consensus vector can also be written in the form of (A12) above. Recall that c = Πp̄, where

we use the assumption of equivalence between p(0) and p̄. Note that the matrix Π = eπT is

derived by infinitely iterating W t, so that Πt = Π for any t = 1, 2, · · · . The following relation

then holds.

(A13) Π = (1− λ)
∞∑
τ=0

(λΠ)τ = (1− λ)Π
∞∑
τ=0

(λ)τ = Π

where the last equality is because
∑∞

τ=0 λ
τ = 1

1−λ . The magnitude of disagreement can thus be

rewritten as

DP (W ;λ) = sup
p̄∈[0,1]n

‖p∗ − c‖π

= sup
p̄∈[0,1]n

∥∥∥∥∥(1− λ)
∞∑
τ=0

λτW τ p̄− (1− λ)

∞∑
τ=0

λτΠτ p̄

∥∥∥∥∥
π

=
(
1− λ

)
sup

p̄∈[0,1]n

∥∥∥∥∥
∞∑
τ=0

λτ
(
W τ p̄−Πp̄

)∥∥∥∥∥
π

(A14)
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Applying the triangular inequality and the results of Lemma 1 yields

DP (W ;λ) ≤
(
1− λ

) ∞∑
τ=0

λτ

(
sup

p̄∈[0,1]n
‖W τ p̄−Πp̄‖π

)

≤
(
1− λ

)
π
− 1

2
min

∞∑
τ=0

(λ | µ2 |)τ

= π
− 1

2
min

(
1− λ

1− λ | µ2 |

)
(A15)

where the last equality is because
∑∞

τ=0 (λ | µ2 |)τ = 1
1−λ|µ2| .

For the lower bound, recall the assumption made in deriving the lower bound for the

supp̄∈[0,1]n
∥∥W tp̄−Πp̄

∥∥
π

in (A10); that is, p̄ = fi. This assumption implies that W tp̄−Πp̄ =

µt2f2 so that the only variable terms in the second equality of (A14) are λτ and µτ2 . Using this

assumption, the magnitude of disagreement then becomes

DP (W ;λ) ≥
(
1− λ

) ∥∥∥∥∥
∞∑
τ=0

λτ | µ2 |τ f2

∥∥∥∥∥
π

=
(
1− λ

) ∞∑
τ=0

λτµτ2 ‖f2‖π(A16)

Substituting for ‖fi‖π = (〈 fi, fi〉π)
1
2 = 1 and

∑∞
τ=0 (λµ2)τ = 1

1−λµ2 yields

DP (W ;λ) ≥
(

1− λ
1− λ | µ2 |

)
(A17)

This completes the proof of Lemma 2.

The next step of the proof establishes the relationship between the spectra of matrices W

and W̃ .

LEMMA 3: Let µ2(W ) and µ2(W̃ ) be the respective second largest eigenvalues of W and W̃ .

If for all pairs i, j ∈ Lk, w̄il = w̄jl for each subgroup Ll, then µ2(W ) = µ2(W̃ ).

PROOF:

Recall that L = {L1, L2, · · · , Lk} is the set of disjoint cohesive subgroups of W , with nl as

the respective cardinality of Ll. Given the partition L, let V be an n×K collector matrix with

elements vil = 1 if i ∈ Ll, and zero otherwise. It follows from the definition of W̄ that W̄ = WV ;

that is, the element in the ith row and lth column of WV is given by w̄il =
∑

j∈Ll wij .

By definition of V above, its column vectors are linearly independent. That is, if Vi is the ith

column of V , then for some scalars ai for i = 1, · · · ,K,

a1V1 + a2V2 + · · · aKVK = 0
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if and only if a1 = a2 = · · · = aK = 0. Linear independence of the columns of V then implies

that V has a pseudo inverse defined as

V −1 =
(
V V T

)−1
V T

The matrix V −1 is of size K×n, with elements 1
nl

if i belongs to subgroup Ll and zero otherwise.

Given V −1 the matrix W̃ can thus be rewritten as

W̃ = V −1WV = V −1W̄

That is, the element in the kth row and lth column of V −1W̄ is given by 1
nk

∑
i∈Lk

∑
j∈Ll wij =

w̃kl.

The conditions stated in Lemma 3 (i.e. for all pairs i, j ∈ Lk, w̄il = w̄jl for each subgroup

Ll) are also the necessary condition for strong lumpability. Let ei be the ith basis vector, that

is, a row vector of zeroes except a one in the ith coordinate. Then the ith row w̄i of W̄ can

be expressed as w̄i = eiWV . A matrix W is then said to be strongly lumpable under L into

another matrix W̃ if (ei − ej)WV = 0 for all i, j ∈ Ll ∈ L (Buchholz, 1994); where 0 is a

row vector of zeroes. Thus, strong lumpability is equivalent to requiring w̄il = w̄jl for all pairs

i, j ∈ Lk and for each subgroup Ll ∈ L.

The equality µ2(W ) = µ2(W̃ ) then follows from Barr and Thomas (1977, Theorem 1), who

show that if W is lumpable to W̃ , then the eigenvalues of W̃ are eigenvalues of W , so that

µ2(W ) = µ2(W̃ ).

The final step of the proof establishes the relationship between the intensity of cohesion ι(W )

of subgroups in W , which is the trace of matrix W̃ , and the second largest eigenvalue of W̃ .

LEMMA 4: If W̃ is symmetric, that is, w̃kl = w̃lk for each pair Lk, Ll ∈ L, then its second

largest eigenvalue µ2(W̃ ) is bounded by

(A18)

(
2ι(W )

K
− 1

)
≤ µ2(W̃ ) ≤ 2ι(W )− 1

PROOF:

Let Tr(W̃ ) be the trace of W̃ so that Tr(W̃ ) = ι(W ). If W̃ is symmetric, that is, w̃kl = w̃lk

for each pair Lk, Ll ∈ L, then from Wolkowicz and Styan (1980, Theorem 2.2)

(A19)
ι(W )

K
≤ µ1(W̃ ) + µ2(W̃ )

2
≤ ι(W )

K
+

(
K − 2

2

) 1
2

(
ι2(W )

K
−
(
ι(W )

K

)2
) 1

2
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The right hand side inequality of (A19) simplifies to

ι(W )

K
+

(
K − 2

2

) 1
2

(
ι2(W )

K
−
(
ι(W )

K

)2
) 1

2

= ι(W )

(
1

K
+

(
K − 2

2

) 1
2
(
K − 1

K2

) 1
2

)

≤ ι(W )

(
1

K
+

(
(K − 1)2

K2

) 1
2

)

= ι(W )

(
1

K
+

(K − 1)

K

)
= ι(W )

Substituting into (A19) yields

(A20)
ι(W )

K
≤ µ1(W̃ ) + µ2(W̃ )

2
≤ ι(W )

Note however that, just like W , W̃ is also row stochastic. To see why, recall that the kth row

and lth column of W̃ is given by w̃kl = 1
nk

∑
i∈Lk

∑
j∈Ll wij . The sum of all elements in the kth

column of W̃ is then given by

K∑
l=1

w̃kl =
K∑
l=1

1

nk

∑
i∈Lk

∑
j∈Ll

wij =
1

nk

∑
i∈Lk

K∑
l=1

∑
j∈Ll

wij = 1

where the last equality follows because
∑K

l=1

∑
j∈Ll wij =

∑
j∈N wij = 1, and 1

nk

∑
i∈Lk = 1.

Row stochasticity of W̃ then implies that µ1(W̃ ) = 1, such that

(A21)

(
2ι(W )

K
− 1

)
≤ µ2(W̃ ) ≤ 2ι(W )− 1

A2. The relationship between µ2(W ) and µ2(W̃ )

This section aims to show that the second largest eigenvalues of W and W̃ are close to identical

if the structure of W does not deviate by much from the conditions of strong lumpability stated

in Lemma 3: that is, w̄il = w̄jl for all pairs i, j ∈ Lk and for each subgroup Ll. Recall that this

conditions can be equivalently stated as

(A22) (ei − ej)WV = 0 for all i, j ∈ Ll ∈ L.

where ei is a basis vector, that is, a vector of zeroes except a one in the ith coordinate.

To relax condition (A22), we consider small deviations from strong lumpability and define

a related notion of near lumpability. For some small ε > 0, an interaction matrix W is near
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lumpable if it can be expressed as W = P + εR, where P is strongly lumpable and R is an

arbitrary matrix. In analogy to (A22), W is near lumpability if for some small ε > 0,

(A23) (ei − ej)WV ≤ εe for all i, j ∈ Ll ∈ L.

PROPOSITION 3: Let W be symmetric and nearly lumpable with respect to a partition L to

W̃ so that W = P + εR, where P is strongly lumpable and R is some arbitrary matrix. Let

Rmax = maxi∈N
∑n

j=1 rij be the maximum row-sum of R. Then

(A24) | µ2(W )− µ2(W̃ ) |≤ εRmax

(
1 +

1

| µn(R) |

)

where µn(R) is the magnitude of the smallest eigenvalue of R.

Proposition 3 demonstrates that if W is nearly lumpable, then its second largest eigenvalue

does not deviate by much from that of W̃ . Under this condition, ε and/or Rmax are sufficiently

small that the right hand side of (A24) is very small. The result in Proposition 3 is valid for

the case when W is symmetric. That is, for any pair of agents i and j, wij = wji. Symmetry

of W is a mild assumption that makes the derivation of the relation in (A24) significantly less

cumbersome. Relaxing this assumption leads to highly complex expressions with less added

value qualitatively.

Proof of Proposition 3

The definition of near lumpability in (A23) implies that W can be rewritten as W = P +

εR, where P is strongly lumpable and R is some arbitrary transition matrix. Let U = V −1.

Multiplying W with U on the left and V on the right hand sides yields

(A25) W̃ = UWV = UPV + εURV = P̃ + εURV

We apply the following inequalities on eigenvalues to establish the relationship between µ2(W )

and µ2(W̃ ). Let A and B be n × n non-negative symmetric matrices with eigenvalues a1 ≥

· · · ≥ an and b1 ≥ · · · ≥ bn respectively. Then the eigenvalues c1 ≥ · · · ≥ cn of C = A+B have

the following bounds (Bhatia, 2001).

(A26) ci+j−1 ≤ ai + bj whenever 0 < i, j, i+ j < n, and ci ≥ ai + bn for 0 ≤ i ≤ n.
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Since W is non-negative and symmetric, P , R, P̃ and URV must all be symmetric. Letting

i = 1 and j = 2, it follows from the first inequality of (A26) that

(A27) µ2(W ) ≤ µ2(P ) + εµ1(R)

and from the second inequality

(A28) µ2(W̃ ) ≥ µ2(P̃ ) + εµk(URV )

Since µ2(P ) = µ2(P̃ ) by virtue of lumpability of P , it follows that

(A29) | µ2(W )− µ2(W̃ ) |≤| εµ1(R)− εµk(URV ) |≤ ε | µ1(R) | +ε | µk(URV ) |

To establish the relationship between µ1(R) and µk(URV ), we first examine the eigenvalues

of V UR, and then later apply the relation µk(URV ) = µk(V UR). This relation follows from

Horn and Johnson (1990, Theorem 1.3.20); that is, Suppose that A ∈ Mm,n and B ∈ Mn,m,

with m ≤ n. Then the n eigenvalues of BA are the m eigenvalues of AB together with n−m

zeroes. We then use the following lemma for bounding µk(V UR).

LEMMA 5: (Wang and Xi, 1997, Lemma 2) Let G,H ∈ Cn×n be positive definite Hermitian,

and let 1 ≤ i1, · · · , il ≤ n. Then

(A30)

l∏
τ=1

µiτ (GH) ≤
l∏

τ=1

µiτ (G)µiτ (H)

(A31)

l∏
τ=1

µiτ (GH) ≥
l∏

τ=1

µiτ (G)µn−τ+1(H)

The inequality (A30) implies that

(A32)

µ1(V UR).µ2(V UR). · · · .µk(V UR) ≤
[
µ1(V U).µ2(V U). · · · .µk(V U)

][
µ1(R).µ2(R). · · · .µk(R)

]
The matrix V U is of size n and consists of k diagonal block matrices; it thus consists of the

first k eigenvalues equal to one. That is µ1(V U) = µ2(V U) = · · · = µk(V U) = 1, so that

(A33) µ1(V UR).µ2(V UR). · · · .µk(V UR) ≤ µ1(R).µ2(R). · · · .µk(R)
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and that

(A34) µk(V UR) ≤ µ1(R).µ2(R). · · · .µk(R)

µ1(V UR).µ2(V UR). · · · .µk−1(V UR)

Using (A31), µk−1(V UR) is bounded from below by

µ1(V UR).µ2(V UR). · · · .µk−1(V UR)

≥
[
µ1(V U).µ2(V U). · · · .µk−1(V U)

][
µn−k+2(R).µn−k+3(R). · · · .µn(R)

]
= µn−k+2(R).µn−k+3(R). · · · .µn(R)

so that

µk−1(V UR) ≥ µn−k+2(R).µn−k+3(R). · · · .µn(R)

µ1(V UR).µ2(V UR). · · · .µk−2(V UR)

Substituting into (A34) yields

(A35) µk(V UR) ≤ µ1(R).µ2(R). · · · .µk(R)

µn−k+2(R).µn−k+3(R). · · · .µn(R)
≤ kµ1(R)

(k − 1)µn(R)
≤ µ1(R)

µn(R)

And hence

(A36) | µ2(W )− µ2(W̃ ) |≤ ε | µ1(R) |
(

1 +
1

| µn(R) |

)

Since R is non-negative, it follows from Gershgorin circle theorem that | µ1(R) |≤ Rmax =

maxi∈N
∑n

j=1 rij .

A3. Proof of Proposition 2

We start by showing that

(A37) p(t) = (1− λ)

t−1∑
τ=0

(λW )τ p̄ + (λW )tp̄
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The expression on the right hand side of (A37) is a generalization of an iterative process. That

is,

p(1) = λW p̄ + (1− λ)p̄ =
(
λW + I − λI

)
p̄

p(2) = λWp(1) + (1− λ)p̄ =
(
(λW )2 + λW + I − λ2W − λI

)
p̄

p(3) = λWp(2) + (1− λ)p̄ =
(
(λW )3 + (λW )2 + λW + I − λ3W 2 − λ2W − λI

)
p̄

p(4) = λWp(3) + (1− λ)p̄ =
(
(λW )4 + (λW )3 + (λW )2 + λW + I − λ4W 3 − λ3W 2 − λ2W − λI

)
p̄

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

p(t) =
(
(λW )t + (λW )t−1 + · · ·+ λW + I − λtW t−1 − λt−1W t−2 − · · · − λ2W − λI

)
p̄ = (1− λ)

t−1∑
τ=0

(λW )τ p̄ + (λW )tp̄

We next derive the lower and upper bounds for the distance DE(W ; t) between the vectors

p(t) and p∗, where as before

(A38) p∗ = (1− λ)
∞∑
τ=0

(λW )τ p̄

LEMMA 6: The distance DE(W ;λ; t) to the long-run distribution after t iterations is bounded

by

(A39)
λ (1− | µ2 |)
1− λ | µ2 |

(λ | µ2 |)t ≤ DE(W ;λ; t) ≤ π−
1
2

min

[
2− λ (1+ | µ2 |)

1− λ | µ2 |

]
(λ | µ2 |)t

PROOF:

As a starting point, note that Π can be rewritten as

(A40) Π =
1− λ
λt

∞∑
τ=t

(λΠ)τ =
1− λ
λt

Π
∞∑
τ=t

(λ)τ =
1− λ
λt

.
λt

1− λ
Π = Π

Thus, λtΠt = λtΠ = (1− λ)
∑∞

τ=t(λΠ)τ . We can then express p∗ − p(t) as

p∗ − p(t) = (1− λ)

∞∑
τ=t

(λW )τ p̄− (λW )tp̄

= (1− λ)
∞∑
τ=t

(λW )τ p̄− (1− λ)
∞∑
τ=t

(λΠ)τ p̄ + λtΠtp̄− (λW )tp̄

= (1− λ)
∞∑
τ=t

λτ (W τ −Π) p̄− λt
(
W t −Π

)
p̄
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The upper bound for the distance to equilibrium DE(W ;λ; t) is then given by

DE(W ;λ; t) = sup
p̄∈[0,1]n

∥∥∥∥∥(1− λ)
∞∑
τ=t

λτ (W τ −Π) p̄− λt
(
W t −Π

)
p̄

∥∥∥∥∥
π

(A41)

≤ (1− λ)

∞∑
τ=t

λτ

(
sup

p̄∈[0,1]n
‖W τ p̄−Πp̄‖π

)
+ λt sup

p̄∈[0,1]n

∥∥W tp̄−Πp̄
∥∥
π

≤ (1− λ)π
− 1

2
min

[ ∞∑
τ=t

(λ | µ2 |)τ +
λt

1− λ
| µ2 |t

]

= (1− λ)π
− 1

2
min

[
(λ | µ2 |)t

1− λ | µ2 |
+

(λ | µ2 |)t

1− λ

]

= π
− 1

2
min

[
2− λ (1+ | µ2 |)

1− λ | µ2 |

]
(λ | µ2 |)t

where we wrote µ2 for µ2(W ), the second inequality follows from triangular inequalities for

sums, the third inequality follows from Lemma 1.

The derivation of the lower bound follows similar steps as in the proof of the lower bound

for the magnitude of disagreement. Specifically, let p̄ = fi without loss of generality so that

W tp̄−Πp̄ = µt2f2. The only variable terms in (A41) are λτ and µτ2 , and hence,

DE(W ;λ; t) =

∥∥∥∥∥(1− λ)
∞∑
τ=t

λτ | µ2 |τ f2 − λt | µ2 |t f2

∥∥∥∥∥
π

(A42)

=

∥∥∥∥∥
[

(1− λ)
∞∑
τ=t

λτ | µ2 |τ −λt | µ2 |t
]
f2

∥∥∥∥∥
π

=

∣∣∣∣∣(1− λ)

∞∑
τ=t

λτ | µ2 |τ −λt | µ2 |t
∣∣∣∣∣ ‖f2‖π

=

∣∣∣∣ 1− λ
1− λ | µ2 |

(λ | µ2 |)t − (λ | µ2 |)t
∣∣∣∣

=

∣∣∣∣−λ (1− | µ2 |)
1− λ | µ2 |

∣∣∣∣ (λ | µ2 |)t

=
λ (1− | µ2 |)
1− λ | µ2 |

(λ | µ2 |)t

where the fourth equality os because ‖f2‖π = 1, and the last equality follows from the fact that

| µ2 |≤ 1.

To derive the upper bound for the convergence time, note that when DE(W ;λ; t) ≤ ε,

t ≥
(

ln (ε)− ln

(
π
− 1

2
min

[
2− λ (1+ | µ2 |)

1− λ | µ2 |

]))/
ln (λ | µ2 |) = ln

επ 1
2
min (1− λ | µ2 |)

2− λ (1+ | µ2 |)

/ln (λ | µ2 |)
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From the definition of CT (W ;λ; ε) as the minimum t at which DE(W ;λ; t) ≤ ε, it follows that

CT (W ;λ; ε) ≤ ln

επ 1
2
min (1− λ | µ2 |)

2− λ (1+ | µ2 |)

/ln (λ | µ2 |)

Similarly, when DE(W ;λ; t) ≥ ε, then

t ≤
(

ln (ε)− ln

([
λ (1− | µ2 |)
1− λ | µ2 |

]))/
ln (λ | µ2 |) = ln

(
ε (1− λ | µ2 |)
λ (1− | µ2 |)

)/
ln (λ | µ2 |)

Thus, by definition of CT (W ; ε), we have

CT (W ;λ; ε) ≥ ln

(
ε (1− λ | µ2 |)
λ (1− | µ2 |)

)/
ln (λ | µ2 |)


