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Abstract

This paper studies the diffusion of products and behaviour with coordination effects
through social networks when agents are myopic best responders. We develop a new network
measure, the contagion threshold, that determines when a p-dominant action—an action that
is a best response when adopted by at least proportion p of an agent’s opponents—spreads
to the whole population starting from a group of players whose size is smaller than half and
independent of the population size. We show that a p-dominant action spreads to the whole
network whenever the contagion threshold of that network is greater or equal to p. We then
show that in settings where agents regularly or occasionally experiment and choose non-
optimal actions, there exists a threshold level of experimentation below which a p-dominant
action is chosen with the highest probability in the long run. This result implies that targeted
contagion, a network-wide diffusion of actions initiated by targeting agents, is justified even

in settings where agents’ decisions are noisy.
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JEL Classification: C72, C73, D83, D85

1 Introduction

The adoption of new products and behaviour through social influence is a well-documented

phenomenon.'

This phenomenon provides a justification for targeted contagion, a process by
which a firm initiates a cascading adoption of a product from a relatively small group (compared
to the population size) of consumers, called initial adopters, to the whole population. The
feasibility of targeted contagion depends on the structure of interactions and payoffs, and the
behavioural assumptions that underlie individual decision processes.?

This paper studies how the interaction structure and payoffs interactively determine the
feasibility of targeted contagion of products and behaviour with coordination effects (i.e. where
individuals benefit from coordinating their activities by making the same decisions).? The exist-

ing literature in this topic focuses on examining contagion in unbounded networks (Morris, 2000;
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Oyama and Takahashi, 2015). However, most social interactions are best described by finite net-
works, and most of the simplifying assumptions that are applicable to contagion dynamics in
unbounded networks do not hold for finite networks.* Moreover, the literature does not address
the question of whether targeted contagion is economically reasonable in settings where indi-
viduals regularly or occasionally experiment with their choices (see for example McKelvey and
Palfrey (1995), Anderson et al (2001) and Ellison (2006) for evidence of noisy decision making).
In such settings, targeted contagion is economically reasonable if the level of experimentation
does not prevent actions from spreading through contagion. To address these gaps in the litera-
ture, we examine the following two questions: For a diffusion process on networks where agents
are best responders and payoffs exhibit coordination effects, which actions are contagious and
when is contagion feasible? In situations where individuals experiment with their choices, when
is it economically reasonable to engage in targeted contagion?

To address these questions, we consider two related evolutionary game models. In Model
1, ewvolution with best response, we consider a diffusion process where agents, who are myopic
best responders, interact through a finite network and revise their actions over time (Morris,
2000; Oyama and Takahashi, 2015). Here, myopia means that agents choose best responses to
the most recent actions taken by their network neighbours. It captures the notion of bounded
rationality; that is, in the real world, individuals have short memories and do not worry about
the long-run consequences of their actions (Egidi et al, 1992).

In Model 2, evolution with best response and mutations, we consider a diffusion process
where agents follow the structural and behavioural assumptions of Model 1, but in addition,
they regularly or occasionally make mistakes and choose actions that are not best responses
(Young, 1993; Ellison, 2000). Individual mistakes are either due to deliberate experimentation
where agents try-out new actions (possibly because of lack of complete information about the
game), or due to random errors in action implementation leading agents to choose unintended
actions.

We use Model 1 to examine which actions (of a coordination game) are contagious and
when contagion is feasible, and Model 2 to examine when targeted contagion is economically
reasonable in settings where agents’ decisions are noisy. Formally, an action is contagious on a
finite network if: (7) it can spread from a small group of initial adopters, whose size is independent
of the population size, to the whole population; (i7) it is uninvadable — it can spread from a
strictly smaller group (of initial adopters) than is needed to leave a state where it is adopted by
the whole population. In Model 2, individual mistakes ensure that every configuration of actions
is played with a positive probability at any period. We define the long-run equilibrium of this
model as the configuration of actions that is played with the highest probability in the long run.
Targeted contagion is then said to be economically reasonable if the contagious action in Model
1 is also the long-run equilibrium of Model 2 (i.e. if the long-run equilibrium is a configuration
containing only the contagious action).

We develop a new network measure — the contagion threshold — that determines when con-

4For example, when the network is unbounded, an action is said to spread contagiously if it can spread to
the whole population starting from a finite group of initial adopters (Morris, 2000). However, when the network
structure is finite, it is necessary to have knowledge of the number and identity of agents that can trigger the
contagious spread of an action.



tagion is feasible in finite networks. Let a; be the p-dominant action/strategy of a coordination
game (i.e. a strategy that is a best response when played by at least proportion p of an agent’s
neighbours). The contagion threshold of a finite network is the maximum value of p such that
action a; spreads contagiously in that network starting from the second-neighbourhood (i.e. the
set of all agents within two steps away from a given agent, with that agent included) of any
agent. This definition is similar to the definition of the contagion threshold for unbounded
networks and 2 x 2 coordination games in Morris (2000) — the contagion threshold of an un-
bounded network is the maximum p such that a; spreads contagiously from a finite group of
agents. The difference arises because for contagion dynamics in finite networks, it is necessary
to have knowledge of the size and identity of the initial adopters that trigger the contagious
spread of a p-dominant action.

We show, for Model 1, that a p-dominant action of a coordination game, if it exists, is
contagious on any sufficiently large and strongly connected network (i.e. a network where every
pair of agents is connected through some path) with the contagion threshold greater or equal to p.
The set of initial adopters that trigger the contagious spread of a p-dominant action corresponds
to the smallest second-neighbourhood of the network. The smallest second-neighbourhood of
any network is independent of the population size and it can be as small as three agents. More
generally, the smallest second-neighbourhood is smaller for networks with a lower density of
connections.” This result suggests that the cost of targeted contagion, measured as the number
of initial adopters that trigger the contagious spread of a p-dominant action, is lower for sparsely
connected than highly connected networks. We discuss this and other implications of these
results in more detail in Section 3.

For Model 2, we show that there exists a threshold level of noise below which targeted
contagion is economically reasonable. Specifically, below the threshold level of noise, a config-
uration containing only a p-dominant action is the unique long-run equilibrium in a strongly
connected network with the contagion threshold greater or equal to p. Above the threshold level
of noise, noisy dynamics becomes more prominent relative to best response dynamics, which
makes contagion a less relevant means of spreading an action to the whole population. Target-
ing therefore becomes economically unreasonable because targeted agents will ultimately switch
to other actions through experimentation.

This paper is closely related to the literature that examines how the network structure
affects the contagious spread of actions that exhibit coordination effects (Morris, 2000; Alés-
Ferrer and Weidenholzer, 2008; Oyama and Takahashi, 2015).° Morris (2000) shows that, for
best response dynamics on unbounded networks, a p-dominant strategy of a 2 x 2 coordination
game is contagious if p is less or equal to the contagion threshold. Alés-Ferrer and Weidenholzer
(2008) consider a model of imitation dynamics and show that, with some restrictions on the
information structure, a Pareto-dominant equilibrium of a 2 x 2 coordination game is contagious
on any network that is strongly connected. Oyama and Takahashi (2015) consider a model

of best response dynamics on unbounded networks and show that either a risk-dominant or

5The network density is the number of links connecting agents divided by the total number of links possible.

SThere is a related literature on diffusion in the presence of coordination effects, for example (Lépez-Pintado
et al, 2008), (Jackson and Yariv, 2007), (Sundararajan, 2007), (Galeotti et al, 2010) and (Galeotti and Goyal,
2009). However, these papers study binary choice diffusion processes on random networks.



a Pareto-dominant strategy is contagious in the presence of a third dominated strategy. Like
Oyama and Takahashi (2015), we generalize the analysis in Morris (2000) to multiple strategy
coordination games. However, Oyama and Takahashi (2015), focus on two types of networks —
linear and non-linear networks — so that a strategy is contagious if it can spread contagiously
in either of these two networks. Our analysis is richer in that we establish the conditions under
which a strategy is contagious on any given network. A more fundamental difference between
our analysis and Morris (2000) and Oyama and Takahashi (2015) is that we examine contagion
in finite networks and provide steps for computing the smallest number of initial adopters needed
to trigger contagion.

Our analysis and results from Model 2 are related to the literature on stochastic evolutionary
game dynamics in networks (Ellison, 1993, 2000; Blume, 1995; Berninghaus and Schwalbe, 1996;
Young, 1998; Lee and Valentinyi, 2000; Lee et al, 2003; Alés-Ferrer and Weidenholzer, 2007;
Peski, 2010; Opolot, 2018, 2020). Except for Peski (2010) and Opolot (2018, 2020), these
papers focus on identifying the stochastically stable states (i.e. states that are played with
a positive probability at the limit of noise) by considering specific network structures, such
as a ring and 2-dimensional grid networks. Peski (2010) considers a model of evolution with
best response and mutations and shows that a p-dominant strategy is uniquely stochastically
stable in networks with the smallest odd degree kg (i.e. the size of the smallest odd first-order
neighbourhood) satisfying the condition p < £(1—1/ko). Following the same framework, Opolot
(2018) shows that a p-best response set (i.e. a subset of strategies of a coordination game that
are best responses when adopted by at least proportion p of an agent’s neighbours) is uniquely
stochastically stable in any strongly connected network with the contagion threshold greater
or equal to p; and Opolot (2020) generalizes these results by establishing the conditions under
which the smallest iterated p-best response set is uniquely stochastically stable. In contrast, we
establish the conditions under which a p-dominant strategy is not only stochastically stable, but
also played with the highest probability in evolutionary models with high noise levels. We then
use this result as a justification for targeted contagion in diffusion environments where agents’
decisions are not strictly optimal.

The remainder of the paper is organized as follows. In Section 2, we introduce Model 1 and
Model 2. Section 3 derives our main results on contagion. In Section 4 we derive the main
results of Model 2 and discuss their implications for targeted contagion. Sections 5 and A offer
concluding remarks and the implications of our results for the speed of learning respectively. All

lengthy proofs are contained in the Appendix.

2 The model

2.1 Network, actions and payoffs

We model the diffusion of strategies (representing actions or products) of a coordination
game in social networks using an evolutionary game theory framework. We consider a finite set
of players, N = {1,--- ,4,--- ,n}, connected through a social network represented by a graph
G(N,E), where E is the set of edges connecting players in N. Let G be an n x n interaction

matrix representing all connections in G(NV, E), where Gy, = 1 if a link exists from ¢ to k, and



zero otherwise. We place the following restrictions on G:
(i) G is undirected and unweighted, that is, either Gy, = Gi; = 1, or Gy, = Gi; = 0.

(i) G is strongly connected, that is, for every pair of agents i,k € N, there exists a path of

(undirected) links from 7 to k.

Both restrictions are simplifications that ensure that the evolutionary process (described be-
low) converges. Directed and/or non-strongly connected networks can lead to cyclic interactions
and/or isolated nodes, which inhibits convergence. Let N; be the set of direct neighbours of i,
that is, N; = {k | G;1 = 1}; and let n; be the cardinality of IV;, also commonly referred in the
social networks literature as the degree of i.

Every player plays a coordination game with each neighbor. A coordination game consists
of a set of strategies, A = {a1,--- ,a;, - ,am}, which we assume to be identical for all players,
and an m x m payoff matrix, U. Let u(aj, a;) be the payoff of playing strategy a; against an
opponent playing strategy a;. The double, (A,U), is a coordination game if for each a; € A,
u(aj,a;) > u(ay,a;) for all a; # aj. We focus on strict symmetric coordination games where
u(aj,ap), for all aj,a; € A, is identical for all players, and for each a; € A, u(aj,a;) > u(a;, a;)
for all a; # a;.

Let ¥ be the set of all mixed strategies over A so that, for any o € ¥, o(a;) is the mass
that o places on a;. For player i, we write 0; = (04(a1), -+ ,0i(an)) for the distribution over
A representing the proportion of ¢’s neighbours playing each pure strategy. We consider linear

payoffs where the total payoff that ¢ receives from playing strategy a; against o; is

Uiaj | o) = Y oia)u(ay, ar). (1)

a€EA

We refer to the quadruple (A, U, N, G) as a local interaction symmetric coordination game.

2.2 Behaviour and dynamics

Given the local interaction symmetric coordination game (A, U, N, G), we consider an evolu-
tionary process where players simultaneously and independently revise their strategies at discrete
times ¢t = 1,2,---. This evolutionary process suitably models the diffusion of products where
agents can replace the old, spoilt or no longer preferred products with new ones of the same
type/brand, or with different competing products. We consider two related evolutionary models

that capture realistic behavioural assumptions about how people react to observed behaviour:

(i) Model 1: evolution with best response, where players choose strategies that are best

responses to the strategy profile of their direct neighbours.

(ii) Model 2: evolution with best response and mutations (BRM), where, in addition to the
best response behaviour of Model 1, players make mistakes with a positive probability
and choose strategies that are not best responses. Individual mistakes can be thought of
as deliberate experimentation with new strategies (i.e. trying-out new strategies possi-
bly due to lack of complete information about the game), or random errors in strategy

implementation leading a player to choose an unintended strategy.



As customary in the literature of evolutionary game theory, we assume that players are
myopic best responders. That is, at every period, ¢, each player chooses a strategy that is a best
response to the distribution of strategies in her neighbourhood at period ¢ — 1. The assumption
of myopia captures the notion that, in the real world, individuals have short memories and are
incapable of keeping track of the entire history of play, and that they do not worry about the
long run consequences of their strategy choices (Egidi et al, 1992).

To formalize these ideas, let lowercase bold letters e.g. x, y, z,- - - denote vectors representing
profiles (configurations) of strategies. Let x' (i.e. the ith element of configuration x) be the
strategy that player ¢ € N plays in configuration x. Given the local interaction symmetric
coordination game (A, U, N,G), we write X for the set of all possible strategy configurations.
The cardinality of X is m”, where m is the number of strategies. Let o;(a;;x) be the proportion
of i’s neighbours playing a; in configuration x, and let 0;(x) = (0;(a1;%), -+, 0i(am; X)) be the
distribution over A representing the proportion of i’s neighbours playing each strategy under
configuration x. Let x; be the strategy configuration at period ¢. Then, following (1), the payoff
to i for playing strategy a; against distribution o;(x;) is Ui(aj,%t) = >_4,ea 0ilar; Xe)ulag, ap).

The set of strategies that are best responses to 0;(x¢) is defined as
BR;(xy) = {aj : Ui(aj,x¢) > Us(ay, x¢), Vay # aj}

Associated with each BR;(x;) is BR;(a;;x;), which is the probability that i chooses a;
through best response given configuration x;. The following assumption places structure on

these probabilities.

Assumption 1. For any x € X, if the cardinality of BR;(x) is greater than one for some
i € N, then there exists some tie-breaking rule where BR;(aj;x) = 1 for some a; € BR;(x) and
BR;(a;;x) =0 for all other a; € BR;(x) and a; # a;.

Assumption 1 implies that whenever a player is indifferent between two or more strategies,
some tie-breaking rule ensures that only one of the strategies is played with probability one.
This assumption is a simplification that, although not necessary for Model 1, is used to derive
the equilibrium conditions for Model 2.7

A tie-breaking rule in the context of Assumption 1 means that, when indifferent between a set
of strategies, a player chooses one strategy among this set based on some strategy characteristics.
There are several examples of tie-breaking rules that satisfy the conditions in Assumption 1.
First, we could let players choose a strategy within BR;(x) that is also contained in configuration
x and is played by the highest proportion of neighbours: that is, given configuration x and the
respective distribution o;(x), player ¢ plays a strategy a; € BR;(x) for which o;(aj;x) > 0(a;; x)
for all a; € BR;(x)\a;.

Second, we can let players choose some strategy in BR;(x) that dominates other strategies
within BR;(x) under some criteria. For example, we can choose pairwise domination where
a; € BR;(x) is chosen over q; € BR;(x) if its average payoff is higher than for a; whenever it

is played by at least half of neighbours and the rest play a;: that is, a; € BR;(x) is chosen

"An alternative consideration is to assume that each strategy in BR;(x) is played with a uniform probability
m, where |BR;(x)| is the cardinality of BR;(x). This probability structure would still generate the same
results for Model 1, but would lead to less precise analytical results for Model 2.



over q; € BR;(x) if Ui(aj,0) > Us(a;,0) for all o with o(a;) > 3 and o(a;) = 1 — o(a;).
Such a relationship between any pair of strategies is called pairwise risk-dominance (i.e. aj is
pairwise risk-dominant relative to a;). Thus, a player chooses a; from BR;(x) if it is pairwise
risk-dominant relative to all other strategies in BR;(x). Overall, to generate the conditions in
Assumption 1, we can apply one or a combination of tie-breaking rules.

Model 1: Given the above definitions and assumptions, the probability that configuration

x is followed by configuration y at period ¢ + 1, denoted by P(x,y), is given by

n
P(x,y) = [[ BR: (v'ix = x) (2)
i=1
where the product on the right hand side of (2) follows because players revise strategies simul-
taneously and independently.
Model 2: The probability, P;(a;;x;), that player ¢ chooses a; (in period ¢ + 1) given con-
figuration x;, is

Pi(ajix) = - exp(~f) + (1 - exp(~)) BRi{azi ) 3)

The first term on the right hand side of (3), %exp(—ﬂ), captures individual choices due to
mistakes/mutations, and the second term captures best response dynamics. Specifically, a player
follows a best response behaviour with probability (1 —exp(—/)), and with probability exp(—/),
a player mutates and randomly picks any strategy (i.e. with a uniform probability %)

A closer examination of (3) reveals that as § increases to infinity, players choose best re-
sponses with higher probability, and as  tends to zero, agents’ choices become more random.
The exact value of 8 may depend on the interaction environment, and may also vary across
players. For the former, our analysis examines the effects of varying £ on equilibrium behaviour.
However, for simplicity, we assume that ( is identical across players.

Analogously to (2), the probability, Pg(x,y), that configuration x is followed by configuration
y in Model 2 is given by

Ps(x,y) = ﬁPi (yi;xt :X) (4)
=1

The dynamics defined by the transition probabilities in (2) and (4) both follow a stationary
Markov chain on the configuration space X. Let P and Pg denote the respective Markov
transition matrices with P(x,y) and Ps(x,y) as typical elements of P and Pg respectively.
We refer to (A,U,N,G, P) and (A,U,N,G, Pg) as the best response diffusion process and best
response with mutation diffusion process corresponding to Model 1 and Model 2 respectively.

Given these two models, we seek to:

(i) use Model 1 to establish conditions under which contagion occurs on a given network;
(ii) establish conditions under which targeting is economically reasonable in a framework where
agents experiment with their choices.
2.3 Equilibrium behaviour

The equilibrium behaviour of Model 1 is represented by its limit (absorbing) sets. A subset

L C X of states (strategy configurations) is an absorbing set of a Markov chain if, once entered, is



never exited. If an absorbing set is a singleton then it is called an absorbing state or conventions;
that is, any state x € X for which P(x,x) = 1 is an absorbing state. If an absorbing set contains
more than one state, then it is referred to as an absorbing cycle. For example, a pair of states
x and y form an absorbing cycle if P(x,y) =1 and P(y,x) = 1.

Let L be a set of all absorbing sets (i.e. all absorbing states and absorbing cycles) of P.
The composition of L depends on the payoff and network structures. Since (A,U) is a strict
symmetric coordination game, L consists of all monomorphic configuration (i.e. where all players
coordinate on the same strategy). But depending on the network structure, L may also contain
absorbing cycles and configurations where strategies co-exist. For each a; € A, we write a; for
the monomorphic absorbing configuration where all players coordinate on a;. Associated with
each L C L is the basin of attraction, D(L), which is the set of all configurations from which
(A,U, N, G, P) converges to L.

For Model 1, the contagion analysis involves examining the stability of monomorphic ab-
sorbing configurations (i.e. examining the costs, measured in terms of the number of mutations,
of reaching and leaving an absorbing configurations) to determine which configuration contains
a contagious strategy. In doing so, we also establish the conditions under which contagion is
feasible.

For Model 2, the presence of mutations ensures that every strategy configuration is visited
multiple times in the long-run. That is, unlike Model 1 where (A, U, N, G, P) eventually settles
in some absorbing set, in Model 2, each configuration is reached with a positive probability at
any given time. Thus, a suitable measure of equilibrium behaviour in Model 2 is the stationary
distribution, denoted by mg. The stationary distribution of a Markov chain, if it exists, describes
the fractional amount of time the process spends in each configuration in the long-run; or
equivalently, the probability with which each configuration is visited in the long-run.

Formally, let qg be an m™-row vector, where m™ is the size of the state space X of (A,U, N, G, Pg),
representing an initial distribution of the Markov chain of Model 2. For example, if the chain
starts from configuration x, then qq is a vector of all zeros except a one in configuration x.
Since the transition matrix Pg is homogeneous (i.e. independent of time), the distribution of
the Markov chain corresponding to (A, U, N, G, Pg) after t iterations is q; = qué. The station-
ary distribution 7g is then an m™-vector defined as mg = lim;_; qué. This limit exists and is
unique because the Markov chain associated with (A, U, N, G, Pg) is ergodic (i.e. (A,U, N, G, P3)
has a unique absorbing set since every configuration is visited with a positive probability).

Thus, for Model 2, we use the notion of long-run equilibrium, which is the set of strategy
configurations that are visited most often in the long run by the Markov chain associated with
(A,U,N,G, P.). Specifically, a subset L* C L is the long-run equilibrium of (A4,U, N, G, P3) if
ng(L*) > mg(L) for all L C L\L*. Our definition of long-run equilibrium is more general than
the notion of stochastic stability often used in evolutionary game models. A subset L* C L is
stochastically stable if limg_,o, 7g(L*) > 0, which implies that there exists a threshold value
of B above which the long-run equilibria of (A,U, N, G, P3) are stochastically stable. We show
that this threshold value of 5 also corresponds to the value above which best response dynamics

dominates noisy dynamics, so that targeting players is economically reasonable.



3 Diffusion through contagion

We aim to generalize the notion of contagion defined by Morris (2000) for 2 x 2 coordination
games played on unbounded networks to multiple-strategy coordination games played on finite
networks. For a 2 X 2 symmetric coordination game with strategies a; and a; played on an
unbounded network, strategy a; is contagious if: (i) starting from a strategy profile where all
players play a;, a; spreads contagiously from a finite group of initial adopters; (i7) it is uninvadable
— once a convention where all players play a; is established, it should not be possible to leave it
with a finite group of deviants. These concepts can be extended to multiple-strategy coordination

games and finite networks through the following series of conceptual definitions.

Definition 1. A sequence of strategy profiles {xt}izo of (A,U,N,G,P), for somet > 2, is a
best response sequence if it satisfies the following properties: (i) for all 1 <t < t, there exists at
least one i € N such that o} # xi_; (i) if #% # 2t_,, then xt € BR(0i(x¢—1)).5

Property (i) of Definition 1 requires that at least one player must switch a strategy at
each period — this follows because we consider a dynamic process with a simultaneous revision

protocol. Property (i) requires players to switch strategies through best response dynamics.

Definition 2. Let (A,U,N,G, P) start from some a € L\a;. Strategy a; spreads contagiously
from a subset of players, N(a — a;) C N, if there exists some t > 2 such that every best response

sequence {xt}izo with xo = a and = = a; for all i € N(a — a;) satisfies xt = a; for all i € N.

Let n(a — a;) be the cardinality of N(a — a;). According to Definition 2, when (A, U, N, G, P)
starts from a, strategy a; spreads contagiously from a subset of players, N(a — a;), if it spreads
to the whole network through best response. If N(a — a;) is the smallest set from which a; can
spread contagiously, then we refer to it as the set of initial adopters of a; needed to trigger a

network-wide adoption of a; starting from a.

Definition 3. A Strategy, a;, spreads contagiously on network G if for every a € L\a;, there
exists some N(a — a;) C N with n(a — a;) < §, and independent of n, such that a; spreads
contagiously from N(a — ay).

For unbounded networks considered by Morris (2000) and Oyama and Takahashi (2015),
it is sufficient to require n(a — a;) to be finite. However, for finite networks, an equivalent
requirement is for n(a — a;) to be relatively small (i.e. less than half the population size) and
independent of the population size. This implies that as n grows, n(a — a;) stays finite. One
of the objectives of this paper is to define a network measure that determines when a strategy
can spread contagiously on a given network. Once such a measure is defined, it is then possible

to derive an upper bound for n(a — a;), for all a € L\a;.

Definition 4. Let r(a;) be the number of mutations required to leave convention a;. Convention
a; is uninvadable if, for every a € L\a;, there exists a subset of initial adopters, N(a — ay),

such that r(a;) > n(a — a;), and that r(a;) is an increasing function of n.

8This definition is similar to Oyama and Takahashi (2015, Definition 1) but different in that we consider
simultaneous best response dynamics in finite networks.



Definition 4 ensures that once strategy a; has spread contagiously to the whole network,
convention a; should not be easily replaced by another convention through a few mutations. The
second condition for uninvadability in Definition 4, (i.e. 7(a;) must be an increasing function
of n) ensures that as n grows, it becomes harder (i.e. many mutations are required) to leave
convention a;; and in unbounded networks, lim,,_,~, (a;) = oo, so that it is not possible to leave

a; with a finite number of mutations.

Definition 5. Given a strict symmetric coordination game (A,U), strategy a; is contagious in

network G(N, E) if it spreads contagiously in G(N, E) and is uninvadable.

From Definition 5, we see that strategy a; is contagious in a finite network if, for all a € L\ay,
n(a — a;) is independent of the population size, n, and r(a;) is an increasing function of n. As
the population size becomes infinitely large, we then have an equivalent definition for contagion
in unbounded networks where lim,,_,, n(a — a;) < co and lim,,_,+, r(a;) = co.

Given a network G and any subset of players S C N, let N;(S) = N;NS be the set of i’s direct
neighbours within G that belong to subgroup S. Let n;(S) be the corresponding cardinality of
N;(S) and o;(S) = %ZS) be the proportion of i’s neighbours in S.

Now, let (A,U, N,G, P) start from some a € L\a;. Then from Definitions 1 and 2, strategy
a; spreads contagiously from subgroup N(a — a;) if the following two conditions hold. First, ¢,
must be a p-dominant strategy, where, following Morris et al (1995), a strategy is p-dominant if
it is a best response to all distributions that place on it a mass of at least p. That is, for a strict
symmetric coordination game (A, U), strategy a; is (strictly) p-dominant if for all a; € A, and
all o € ¥ with o(a;) > p,

Z o(ar)u(ar, ar) > Z o(ag)u(aj,ar) for all a; # a

ap€A ap€A
In the context of the local interaction symmetric coordination game, a strategy is p-dominant if
it is a best response whenever it is played by at least proportion p, or a total of at least [pn;],
of a player’s neighbours, where [x]| is the least integer greater than or equal to z.

Second, there must exist a sequence of sets of players, Si,S2,---,Sy, with S1 = N(a — a;)
and U}‘]:1 S;j = N, whereby for each i € Sj, and all j = 2,3,--- ,J, a;(Sj—1) > p. That is, for
each player i € S;, the proportion of i’s neighbours that belong to S;_; is greater than p. This
inequality ensures that once all players in S; = N(a — a;) play strategy a; from period ¢t = 1
onward, then at ¢t = 2, q; is a best response to all i € S5, so that all players in S1 U .S play a;;
at t = 3, a; is a best response to all ¢ € S3, so that all players in S U .S2 U S3 play a;; and so on,
until ¢ = J at which all players play strategy a;.

al a
1,1 0,0
ai
. 0.0 | B8
Figure 1: A 2 x 2 strict coordination game where a is a p-dominant strategy, for p > ﬁ That is, az is a best

response when played by more than proportion #ﬁ of neighbours.

1+
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Example 1. Consider the 2 X 2 coordination game in Figure 1 with strategy as as a p-dominant
strategy, for p > ﬁ First consider a scenario where § = 1.01, so that as is a %—domz'ncmt
strategy. When this game is played on network Go of Figure 2a, strategy as is a best response
whenever it is played by at least [% x 2| =1 neighbour. If (A,U, N, G, P) starts from a monomor-
phic configuration ay, strategy as will spread contagiously from any pair of two adjacently placed
players. This is because, for any pair of adjacently players, say N(a; — ag) = {1,2}, there
exists a sequence of sets of players, S = {1,2}, Sy = {3,12}, 53 = {4,11}--- S = {7,8},
whereby for each i € Sj, a;(Sj—1) = % = p. That is, if all players in S1 play as from period
t =1 onward, then at t = 2, all players in S1 U Se play as; at t = 3, all players in S1 U Sy U S3
play as; and so on, until t = 6 at which all players play as.

However, for network G of Figure 2b, when 8 = 1.01, strategy as is a best response only when
played by at least (% x 3] = 2 neighbours. This implies that for any sequence, Si,Sa,--+,Sy,
of players in Gz where the size of Sy is less than %, there exists at least one i in some S; with
a;(Sj—1) = % <p= %9 Thus, n(ay — az) > 5 and increases with the population size, and
according to Definitions 2 and 3, strategy as does not spread contagiously on Gs. Strategy as

spreads contagiously on Gs only when B > 2.01 so that ao is %-dominant.

@@ @@

(a) A regular cyclic network, G, of degree (b) A regular cyclic network, G5, of degree
2. 3.

Figure 2: Examples of regular cyclic networks

We define a new network measure — the contagion threshold — for finite networks that captures
the second condition above. This measure not only determines when a p-dominant strategy can
spread contagiously, but also when it is uninvadable. For each ¢ € N, let B; be the rth
neighbourhood of i, the set of all players within distance r (i.e. r steps) from i, with 4 included,
and N;, be the rth-order neighbours of i (i.e. all players at distance r from 7). We write b;, and
n;, for the respective cardinalities of B; and NN;. We then define and compute the contagion

threshold of a finite network as follows.

Definition 6. Given G(N, E):

9For example, if S1 = {1,2,3,4}, so that So = {5,12},S3 = {6,11},Ss = {7,10} and S5 = {8,9}, then for
players 5 and 12, a5(S1) = a12(S1) = % Thus, even if all players in S; mutate to az at t = 1, az will not be
a best response to players 5 and 12 since a2 is a best response only when it is adopted by at least half of the

neighbours.
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(i) pick any i € N and the corresponding B;, ;
(ii) for each r > 2 and j € N;., compute aj(B;,_,) and o = jrél]{[n a;(Bi,_,);

(ii) given i € N, compute o = m>1121 aj .
r>

The contagion threshold of G(N, E), n(G), is given by n(G) = ngl]{[a a;.

The definition of the contagion threshold builds on the notion of sequences of sets of players
discussed above. For each ¢ with a corresponding first neighbourhood B;,, Definition 6 requires

that along a sequence of the r-order neighbours of ¢, N;,, N;,, -+, N;, , where d; is the shortest

ig, >
distance from ¢ to the furthest player, o;j(B;,_,) > n(G) for every j € N; and allr = 2,3,--- ,d;.
For the two networks in Figure 2, the contagion thresholds are n(G2) = 3 and 7(Gs) = 3.

Following the above discussion and Example 1, when p < n(G), a p-dominant strategy can
spread contagiously from the set B;, of any i. Consider the game of Figure 1, and let g = 1.01
so that a9 is a %—dominant strategy. Consider an evolutionary process (A,U, N,G, P) on a
strongly connected network G with n(G) = p = % Then, starting from a;, strategy ae will
spread contagiously from N(a; — ag) = B;, of any ¢ € N. This is because along the sequence
Nig, Nigs -+ Nig, aj(Bi,_,) 2 n(G) = 3 =pforevery j € N; and all 7 = 3,4,--- ,d;, so that
once all players in B;, play as at some period ¢, all players in N;, will switch to a2 at t +1
(because each has at least proportion p of neighbours play as at t); followed by all players in
N;, at t 4+ 2; and so on, until the entire network eventually switches to as.

Our definition of the contagion threshold for finite networks is closely related to the definition
of the contagion threshold for unbounded networks according to Morris (2000). For a 2 x 2
symmetric coordination game with strategies a; and as, let strategy as be a p-dominant strategy.
Morris (2000) defines the contagion threshold of an unbounded network as the maximum p such
that as can spread contagiously in that network. This definition ensures that the contagious
spread of ao can be triggered from some finite group of players. The similarity with Definition
6 is that 7(G) is the maximum p above which a p-dominant strategy of an m x m symmetric
coordination game can spread contagiously in a finite G.

However, the definition of the contagion threshold for unbounded networks in Morris (2000)
does not directly carry-on to finite networks. This is because unlike unbounded networks where
it is sufficient to know that contagion can be triggered from some finite group of players, for
finite networks, it is necessary to have knowledge of the size and the identity of the smallest
group of players from which contagion can be triggered. From Definition 6 and the discussion
that follows, the contagious spread of a p-dominant strategy can be triggered from within the
smallest second neighbourhood of the network. We further discuss the bounds for the size of the
smallest group that triggers the contagious spread of a p-dominant strategy below. But first,
the following theorem establishes the conditions for a p-dominant strategy to be contagious on

a given network.

Theorem 1. Given the diffusion process (A, U, N, G, P) on a strongly connected network G, if
a* € A is a p-dominant strategy of (A,U), then it is contagious in G if p < n(G) and by < n%,
where by = min;en b;,. For all a € L\a*, n(a — a*) < b5 < ns.
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Proof. See Appendix B
O

The proof of Theorem 1 follows in two steps. Let a* be a monomorphic absorbing state
where all players coordinate on strategy a*. We first show that if a* is a p-dominant strategy
of (A,U), and p < n(G), then starting from any state a € L\a*, the size of the subgroup from
which a* spreads contagiously in G is bounded from above by b3.

Let (A,U, N, G, P) start from some a € L\a*, and pick any ¢ € N. If all players in B;, mutate
to a* at t = 1, then from ¢ = 2 onward, a* is a best response to all players in B;, U N;; = B;,
since aj(B;,) > 1n(G) > p for each j € B;,. That is, since each j € B;, has at least proportion
p of their interactions with players in B;,, all of whom play a* at ¢ = 1, and a* is a best
response whenever it is played by at least proportion p of neighbours, it follows that a* is a best
response for each j € B;,. From ¢ = 3 onward, a* is a best response to all B;; UN;, = B;,
since aj(By,;) > n(G) > p for each j € B;,; and so on, until ¢ = d; — 1 when the entire network
eventually plays a*.

Now, let B3 be the second neighbourhood of player i for whom b;, = b3 (i.e. the cardinality
of B is b3), and let d* be the shortest distance from the player for whom b;, = b3 to any other
player (i.e. d* = d;=, where i* is some player for whom biy = b5). Then the above iterative process
implies that, for every a € L\a*, there exists a best response sequence {Xt}flal with xg = a
and le = a* for all j € Bj satisfying :L‘gl*_l = a”* for all j € N. Thus, a* spreads contagiously
on any strongly connected network G whenever p < n(G). The size of the subgroup from which
a* spreads contagiously is bounded from above by b3.

Note that b3 is an upper bound for the minimum number of mutations needed for a* to
spread contagiously on a given network because the exact number of mutations can be much
smaller than b5. The exact number of initial adopters of a* needed to trigger its contagious

spread can be computed in two steps:

(i) identify Bj by computing B;, for each ¢ € N and then picking the one with the smallest

cardinality;

(ii) within Bj, identify the smallest set of players that should play a* so that all players in Bj
eventually switch to play a* through best response. The cardinality of this subset of B3

is then the number of initial adopters.

The second step of the proof of Theorem 1 shows that if a* is the p-dominant strategy,
and p < n(G), then the number of mutations needed to leave (the basin of attraction of)
convention a* is greater than ns. The intuition behind this result is that since each j € N;, has
a;(Bi,_,) > n(G) > p for all r > 2, and that p < %, players within a given B;, will switch to a
strategy different from a* if each has more than proportion (1 —p) > % of neighbours playing
a strategy different from a*. Thus, to leave convention a*, the set of mutants, R(a*), must be
selected in such a way that, for each ¢ € N, each j € B;, has more than half of their neighbours
in R(a*). This implies that the identification of R(a*) is equivalent to the graph theory problem
of identifying monopolies (i.e. sets of vertices of a graph containing at least half of the direct

and /or indirect interactions of every player). Using the well established results in graph theory
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(e.g. Bermond et al (1996, Proposition 4)), it follows that the cardinality of R(a*) is greater
than n?.

Since the number of mutations needed to leave convention a* is a function of n, it follows that
a* is uninvadable whenever b3 < ns. Thus, a p-dominant strategy, a*, is contagious on a strongly
connected network G whenever p < n(G) and b3 < ns. The following example illustrates a direct

application of Theorem 1 to two networks with different contagion thresholds.

Example 2. Consider the network structures in Figure 3. Network G, of Figure 3a has a
contagion threshold of n(G,) = %.10 According to Theorem 1, a p-dominant strategy a* spreads
contagiously in G, if p < % To identify the minimum number of mutations needed to trigger
the contagious spread of a* in this network, we follow the two steps outlined above. First, we
identify the B3 sets. There are siz B sets in G, and we pick the one centred around player 1,
B = By, ={1,2,7,8,15,16,17,18}.

Second, we identify the subset of players of B that must mutate to a* so that all players in
B3 eventually play a* through best response. Consider the case where p = % so that, for players
{1,2}, a* is a best response (BR) when played by at least [% x 2] = 1 neighbour; for player 7,
a* is a BR when played by at least [% x 5| = 3 neighbours; and for players {8,15,16,17,18},
a* is a BR when played by at least [% X 6] = 2 neighbours. For this scenario, if players
{1,2,7,8} simultaneously mutate to a*, then all players in By, will eventually switch to a*
through best response. Any other combinations of less than four mutations by players within B,
may lead to an absorbing cycle containing a* and other strategies but not convention a*. Thus,
the number of initial adopters that trigger the contagious spread of a* is four, a small number
that is independent of the population size.

For network Gy of Figure 3b, the contagion threshold is n(Gp) = %. Pick B5 = By, =
{1,7,13,14}. For each j € By,, a* is a BR when played by at least one neighbour. Thus,
all players in By, will switch to a* within three steps of iteration once one player, player {7},
switches to a*. The corresponding number of initial adopters is thus one, which is a very small
number compared to the population size.

For both networks, a* is uninvadable since the cardinality of B; is less than ns . Specifically,
for p < %, R(a*) must at the least consist of R(a*) = {7,8,9,10,11,12,13,14,23,24,25,26}
for network G,, and R(a*) = {13,14,15,16,17, 18,19, 20, 29, 30, 31, 32} for network Gy. Thus,
r(a*) > 12 for both networks.

The above example helps to highlight two interactive aspects of our results which a firm/planner
aiming to diffuse a product/behaviour must consider: the contagion threshold versus the number
of initial adopters needed to trigger the contagious spread of a strategy. Consider a new firm
contemplating to enter a market (or an existing firm aiming to introduce a new product) where
two or more products (exhibiting coordination effects) already exist. To diffuse her product
through contagion, the firm would first determine the contagion threshold of the network of

consumers. The contagion threshold in turn determines the value of p (i.e. the extent to which

9That is, for each i and corresponding B;,, each j € N;,. for all r > 2 has a;(B;,_,) > % For example, if we
pick player 1 and corresponding Bi, = {7,8}, we see that each j € N1, = {2,15,16,17,18} has «o;(B1,) > %;
each j € N1, = {9,10,23,24} has a;(B1,) > 3; each j € N1, = {3,27,28,29,30} has o;(B1;) > 2; each j €
Ni; = {25,26} has o;(Bi1,) = 3; each j € Nig = {19,29, 21,22} has o;(Bi1;) > 3; each j € N1, = {11,12,13,14}
has a;(Big) > 2; and each j € N1 = {4,5,6,7} has a;(B1,) = 1.
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Figure 3: Network contagion thresholds.

a new product should dominate the existing alternative products) that ensures that the product
3
then the firm must incur large initial costs to ensure that p is sufficiently smaller (i.e. the new

can spread contagiously. If the contagion threshold of the network is much smaller than

product must be highly beneficial compared to existing products) than the contagion threshold.
The upside is that the smaller p, the smaller the number of initial adopters needed to trigger
the contagious spread of a p-dominant strategy, and hence, a firm need not incur large costs on
targeting. Conversely, if the contagion threshold is close to %, then p can also be close to % SO
that the new product only needs to be slightly better than the existing product for it to spread
contagiously. The downside is that the firm may have to invest more resources on targeting
initial adopters. A firm’s objective is thus to evaluate these two types of costs.

Overall, low-density networks (i.e. networks with sparse connection) have lower contagion
thresholds. This is because the smallest possible value for the contagion threshold of any strongly
connected network G is ﬁ, where n(G) is the size of the smallest first-order neighbourhood
in G. Moreover, low-density networks also have smaller b3, and hence, a small number of initial
adopters needed to trigger contagion. This implies that it is relatively less costly to diffuse new
products and behaviour to low-density networks. One possible evidence of this implication of
our results is in the observed discrepancy between the dynamics in the market for messaging and
chat apps (e.g. AOL Instant Messenger, Google talk, VOIP, skype, Kik., whatsapp, snapchat,
HipChat and slack), where there is a high turnover and entry rate, versus social networking
apps (e.g. Friendster, Myspace and Facebook), where turnover and entry rate is relatively low.
Specifically, messaging and chat apps consist of low-density networks where individual interact
with (speak, chat or message to) a few others (family and close friends). Social network apps
on the other hand consist of large number of connections where some individuals may have as
many as tens of thousands of friends. Thus, to invade a network of messaging and chat apps, a

new product need not be much more beneficial than those existing in the market. Invading a
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Facebook-type network, however, requires a new product to be far better, or simply to offer a
different but related services.

Like Oyama and Takahashi (2015), our results extend Morris (2000) who examines contagion
for 2 x 2 coordination games to multiple strategy coordination games. However, in Oyama and
Takahashi (2015), a strategy is contagious if it is contagious in some unbounded network. As
such, it is sufficient to check whether a strategy spreads contagiously in any of two types of
networks, linear and non-linear networks. Our analysis is richer in that we establish conditions
under which a strategy (i.e. a p-dominant strategy) is contagious on any given network. In
doing so, we also provide steps for computing the smallest number of initial adopters needed to
trigger contagion.

A more fundamental difference between our analysis and Morris (2000) and Oyama and
Takahashi (2015) is that we study contagion in finite networks. In particular, Morris (2000)
provides bounds for the contagion threshold in unbounded networks but computing the exact
contagion threshold of an unbounded network is not a straightforward matter. Ideally, one would
select some finite group of players in some region of the network and then iterate over the entire
network following similar steps in Definition 6 above. The problem with using this method when
the network is unbounded is that there is no obvious means of knowing how many iterations
are sufficient for computing the contagion threshold. One would have to assume some form of
uniformity across the unbounded network, and hence, the contagion threshold can feasibly be
determined for only unbounded regular or close to regular networks (i.e. networks where all
players have the same neighbourhood size).

Finally, Al6s-Ferrer and Weidenholzer (2008) examine contagion in both bounded and un-
bounded network but focuses on establishing conditions under which a Pareto-dominant strategy
spreads under imitation dynamics — where players play strategies that earned the highest payoff
in their neighbourhood in the previous period. Imitation dynamics does not, in most cases, gen-
erate intermediate absorbing states where strategies co-exist as best response dynamics does.
Thus, the network structure does not affect contagion under imitation dynamics in the same
way it does under best response dynamics. Consequently, the network measures that affect con-
tagion under best response dynamics, such as contagion thresholds, are not necessarily relevant

for contagion under imitation dynamics.

4 Contagion and best response dynamics with mutations

In Section 3, we established the conditions for contagion in a framework where players strictly
follow best response dynamics. The question we ask in this section is the following: is contagion
relevant in a framework of noisy best response dynamics? There is plenty of empirical evidence
showing that individual decision processes are best described by probabilistic models (McKelvey
and Palfrey, 1995; Anderson et al, 2001; Ellison, 2006).

Naturally, the level of noise in individual decisions may vary across settings and it is possible
that, in some settings, the amount of noise affects the relevance of the process of contagion. That
is, if players frequently make mistakes and play strategies that are not best responses, then the
evolutionary process will frequently deviate from paths corresponding to contagion dynamics (i.e.

the evolutionary process frequently deviates from best response sequences defined in Definition
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1). This may in turn imply that contagious strategies are not played with the highest probability
in the long-run. In such a scenario, it will not be economically reasonable to target specific
players to aid network-wide diffusion.

To examine the above question, we establish conditions under which a convention corre-
sponding to a contagious strategy is a long-run equilibrium in Model 2. We show that, indeed,
under Model 2, there exists a threshold value, 8* > 0, of the noise parameter 3, above which
the convention corresponding to the p-dominant strategy is the long-run equilibrium. Above
5%, best response dynamics, and hence, contagion, dominates experimentation and targeting is
economically reasonable; conversely, below §*, players’ choices are too noisy and targeting is
not economically reasonable. The following definition and notations are used to state the main

results of this section.

Definition 7. Let ¢ C X x X be any oriented graph defined within the configuration space X.
Then for a subset W C X and its complement W, we denote by T'(W) a set of all oriented
graphs satisfying two conditions: (i) no arrows start from W and exactly one arrow starts from

each configuration outside of W, (ii) each g € IT'(W') has no loops.

From Definition 7, if W is a singleton set, say W = {x}, then I'({x}) is a set of all spanning
trees of x (i.e. x-trees). Consider an example where X = {a, b, c,d, e, f,g, h}; Figure 4 presents

two examples of g-trees.

Figure 4: Examples of g-trees, that is I'({g}) graphs and in which the configuration space
X ={a,b,c,d,e,f, g h}.

From the definition of I'(x) graphs, every g € I'(x) spans the entire state space, except for
x. Each y € X has only one arrow emanating from it so that each g € I'(x) has a total of
m'" — 1 directed edges, where m™ is the cardinality of X. Thus, if we let v(x) = #I'(x) be
the cardinality of I'(x), then ~y(x) is identical for any pair of configurations x,y € X; that is,
V(%) =7(y) =1

The cardinality of I'(x), +, is a multiple of, and not an exponential function of the cardinality
of the state space, m”. For example, when the size of the state space is 2, v = 1; when it is 3,
v = 3; when it is 4, v = 15;'! and when it is 5, ¥ = 51. Thus, the natural logarithm of ~, In(7),

is a linear function of n.

"That is, if the state space is X = {a, b, ¢,d}, then the list of I'(d) graphs is: {c -+ b —a — d},{a = c —
b—-d},{a—-b—-c—d}{b—oa—-c—d}{b—>c—a—d},{c>a—db—-d},{a—>c—db—
d},{c > b—d,a—>d},{b—>c—d,a—d},{a—>b—>dc—>d},{a—>b—>d,c—d},{a—c,b—>c,c—
d},{c - a,b—a,a—d},{a—b,c—>bb—d},{c—>da—db—d}
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Proposition 1. For a diffusion model (A,U,N,G, Pg), let Assumption 1 hold. If a* is conta-
gious on network G, then there exists some * € (O,ln ’y/(n% — b;)} such that for all p > B,
ng(a*) > mg(a) for all a € L\a*.

Proof. See Appendix C
O

The proof of Proposition 1 follows in two steps. First, we characterise the structure of
stationary distributions using a graph theoretic method of Freidlin and Wentzell (1984). This
method represents the stationary distribution of any configuration x in terms of the probabilities
of I'(x) graphs. Let c(y,z) be the number of mutations involved in the direct transition from y
to z. The total cost ¢(x;g) of some g € I'(x) is the sum of costs of all transitions in g. That is,
o(x;9) = > (y.2)eg c(y,z). This quantity captures the total cost of reaching x from every other
configuration through paths of graph g.

These costs are directly related to the transition probabilities. The probability that c(y,z)
players simultaneously mutate to play strategies that are not best responses to y is (675 / m) C(y’Z).
Thus, if the probability of mistakes is relatively small, then the larger ¢(y,z) the smaller the
probability of the transition from y to z. The same argument extends to any g € I'(x): if the
probability of mistakes is small, then the higher the cost ¢(x;g) associated with g, the smaller
the probability of reaching x through paths in g. Using the relationship between stationary dis-
tributions and the probabilities of I'(x) graphs provided by Freidlin and Wentzell (1984, Lemma
3.1), we derive bounds for stationary distributions as functions of costs of I'(x) graphs and model
parameters.

Second, we show that under Assumption 1, there exists some * € (O,ln v/ (n% - bg)} such
that for all 8 > 8%, the long-run equilibrium is the strategy configuration with the minimal cost
['(x) graph: that is, for all 8 > 8%, x € argminygex ger(x) ¢(X;9) is the long-run equilibrium;
and that convention a*, corresponding to a contagious strategy a*, has the minimal cost graph.

As discussed above, the intuition behind Proposition 1 is that when the level of experimen-
tation is very high (i.e. § is small and between 0 and §*), the evolutionary process frequently
deviates from the contagion paths (i.e. paths of best response sequences) so that the convention
containing only the contagious strategy need not be the long-run equilibrium. For example,
when 5 = 0, every strategy configuration is visited with equal probability. The upper bound for
B*, lnfy/(ng — b%), increases with n. Specifically, In *y/(n% — b3) is of order (O)(n?/®) because
In~ is a linear function of n.

The findings of Proposition 1 suggest that targeting is indeed economically reasonable even
in settings where players make mistakes and play strategies that are not best responses. More
broadly, Proposition 1 suggests that the predictions in evolutionary game theory that employ
stochastic stability as a solution concept are admissible for relatively high levels of experimen-
tation. Recall that a configuration x is stochastically stable if limg_, mg(x) > 0 (Foster and
Young, 1990; Kandori et al, 1993; Young, 1993). Proposition 1 states that the level of experi-
mentation need not be very small (i.e. 8 need not be asymptotically large); it is sufficient that
B > p*. And in evolutionary models with a finite and small population size, the level of exper-
imentation can be admissibly large because the upper bound for 5*, which is a linear function

of the population size, is small.
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5 Concluding remarks

We examined the diffusion of products and practices with coordination effects through con-
tagion using evolutionary game theory framework. Evolutionary game theory captures many
realistic aspects of individual decision making and interactions, most notably, myopia (i.e. the
inability to remember the entire history of play in complex social interactions); the tendency
to experiment or make mistakes on optimal choices; and the locality of social interactions. We
consider two related models that capture these structural and behavioural properties of social
interactions: evolution with best response, and evolution with best response and mutations.

Using these two models, we show that a p-dominant strategy of a symmetric coordination
game, if it exists, is contagious in networks with the contagion threshold equal or greater than p.
We defined a measure of the contagion threshold for finite networks that is easily computable.
We then examined the effects of noise on contagion, showing that there exists a threshold level of
noise below which contagious choices are long-run equilibrium of an evolutionary process where
agents make mistakes.

Our results have broader implications for targeted contagion. First, we provide steps for
identifying the smallest set of agents that sufficiently trigger the contagious spread of a p-
dominant action. We find that this set can be as small as three agents, and is independent of
the population size. Second, our results imply that targeted contagion is economically reasonable
even in settings where agents experiment with their choices.

Finally, our results have implications for convergence rates of evolutionary dynamics in
networks. One of the common criticisms of the evolutionary game models is that the convergence
rates to equilibrium tend to increase with the population size, so that in very large populations,
equilibrium is not reached in timescales of economic relevance. In the analysis that we have
relegated to Section A, we show that if a contagious strategy exist, then equilibrium is reached
fast.

A Expected waiting time

This section focuses on Model 2 to examine how the process of contagion affects the expected
waiting time from any state to the state with the highest long-run probability. The problem of
slow diffusion does not arise in situations where the level of experimentation is sufficiently high.
Kreindler and Young (2013) and Kreindler and Young (2014) show that when f is sufficiently
small, convergence is fast. Here, we examine the case where [ is very large (i.e. 5 — o00).

We show that when [ is large, the expected waiting time to the monomorphic convention
corresponding to the contagious strategy is independent of the population size. The direct
implication of this result is that even in large networks and with low levels of experimentation,
the diffusion process converges fast to the long-run equilibrium. The expected waiting time is

formally defined as follows.

Definition 8. Let W C X be a subset of the configuration space and W its complement. Define
T(W) =inf{t >0 |x, € W} to be the first time W is reached. The expected waiting time from
some configuration x € W to W is then defined as E [T(W) |x0 = x].
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Let a* be a p-dominant strategy of (A, U), and assume that p < n(G) so that a* is contagious
on G. We aim to show that (A, U, N, G, P:) converges to a* fast (i.e. the expected waiting time
to a* is independently of the population size). To do so, we show that if a* is contagious on G,
then there exists a function F'(3) that is independent of n so that E [T'(a*) |xo = x| < F/(B) for

all initial configurations xy # a*.

Proposition 2. Let a* be a p-dominant strategy of (A,U) and assume that a* is contagious on
a strongly connected network G so that a* is the long-run equilibrium of the diffusion process
(A,U,N,G, Pg). Then there exists some b* € (0,b3) such that

lim InE[T(a*)]

gm —— =V (5)

Proof. See Appendix D
O

Proposition 2 shows that the expected waiting time to the equilibrium configuration of the

evolutionary process with mutations from any other configuration takes the form

E[T(a")] < exp [80" + g(B)] = F(B) (6)

where g(8) is a decreasing function of noise parameter 5. As the level of experimentation tends
to zero (i.e. § — o0), g(8) — 0 and the expected waiting time increases at an exponential rate
of b*, which is independent of the population size.

Compared to existing results on convergence rates of evolutionary processes such as Ellison
(1993), Young (2011), Kreindler and Young (2013) and Kreindler and Young (2014), the result
in Proposition 2 is driven more by contagion and less by noise. Kreindler and Young (2014)
also find that learning is fast in networks, but they consider a 2 x 2 coordination game with
random sampling and with deterministic dynamics. Moreover, they define fast learning as the
case in which noise is large to the extent that only one unique equilibrium exists. On a contrary,
Proposition 2 shows that contagion makes learning fast in stochastic evolutionary game dynamics

for m x m coordination games.

B Proof of Theorem 1

The proof of Theorem 1 follows in two steps. The first step, which is already discussed in
detail in Section 3, demonstrates that if a* € A is a p-dominant strategy of (A4,U) and p < n(G),
then a* spreads contagiously on GG, and that the size of the set of initial adopters is bounded
from above by b5. The second step demonstrates that if a* € A is a p-dominant strategy and

p < n(G), then the number of mutations needed to leave convention a* is greater than ns.

Strategy a* spreads contagiously on G: Given the diffusion process (A,U, N, G, P) on a
strongly connected network G, and a p-dominant strategy a* € A, let p < n(G). Let also
Ay = A\a*. Since a* is p-dominant, it is a best response when played by at least proportion

p of a player’s neighbours and the rest play strategies in Ay. This implies that if all players in
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a given subgroup Z C N play a*, then a* is a unique best response to any ¢ € N for whom
ai(Z) = p.

Let the evolutionary process start from any state a € L\a*, where a can consist of only
strategies in A; or both a* and strategies in A;. Pick any ¢ € N and the respective B;,, and
at period t = 1, let all players in B;, mutate to play a*. The evolutionary process will evolve
through best response from t = 1 onward as follows, where we write Bir = N\B,, for the
complement of B;, , i — A; to mean that i plays a strategy in 4;, Z — A; to mean that each
j € Z plays a strategy in A;:

t=1 B;, — a*; and BZ-Q — A1 Ua*.
t=2 Bi, — a* since each j € B;, has a;(B;,) > of > p; N;; — a* since each
€ Nj, has a;(B;,) > of > p; and Bl-S — A1 Ua*.

t=3 Bi, U N;; — a*; N;, — a* since each j € N;, has o;(B;;) > of > p; and
Bu — A Ua*.

t=4 Bi; UN;; — a*; Nj; — a* since each j € N;; has o;(B;,) > of > p; and
Bi5 — A1 Ua*.

—_—— | === This iterative process continues until t =d; — 1 — — — ——

t=d;—1 | N — a*.

We see from the above iterative process that after t = d; — 1 iterations, the evolutionary
process converges to convention a*. Thus, starting from any a € L\a*, there exists a best
response sequence {xt}ffol with xo = a and 27 = a* for all j € N(a — a*) = B,,, for any
i € N, satisfying a:ldi_l = a* for all [ € N. Since this holds for B;, of any < € N, it follows that
the size of the smallest set of initial adopters is b5 = argmin; ¢ b;,.

Since b3 is independent of the population size, n, we conclude that when p < n(G), strategy
a* spreads contagiously on G with n(a — a*) < b} for all a € L\a*. Note that the upper
bound for n(a — a*) follows because although b5 mutations to a* guarantee that a* spreads
contagiously, it is possible, in most networks, to find a smaller set than Bj that sufficiently

triggers the contagious spread of a*.

Uninvadability of a*: Recall that convention a* is uninvadable if r(a*) > n(a — a*) for all
a € L\a*, and that r(a*), which is the number of mutations required to leave convention a*, is
a function of n. We first show that if a* spreads contagiously on a strongly connected network
G, then r(a*) > ns.

Let R(a*) C N be the smallest set of players that should mutate to strategies in A; for
the evolutionary process to leave the basin of attraction of a*, where r(a*) is the cardinality
of R(a*). We see from the preceding analysis that if there exists a player ¢ in G for whom
all players in B;, play a*, then a* spreads contagiously, and hence, the evolutionary process
converges to a* regardless of the strategy configuration of other players not in B;,. Thus, to
leave a*, no such player must exist, and that each player must be at most two steps away from

R(a*); that is, for each i, a sufficiently large proportion of players in B;, are in R(a*). Since a*
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is p-dominant, where p < %, strategies in A; are best responses only when more than proportion
(1-p) > % of neighbours play strategies in A;. For strategies in Ay to become best responses
to players within B;,, more than % of the interactions of players in B;, must be in R(a*); and
R(a*) must be chosen to satisfy this condition for each i € N.

The identification of the smallest R(a*) is then equivalent to the problem of identifying the
smallest 2-monopolies in graph theory, defined as follows. A player ¢ in network G is said to
be 2-controlled by the set Z C N of players if at least half of the players in B;, are in Z. The
set Z is called a 2-monopoly if it 2-controls every player in the network. Bermond et al (1996,
Proposition 4) show that the minimum size of a 2-monopoly on any undirected and strongly
connected network of size n is 1’ (see Peleg (2002) for a review of the literature on monopolies
and local majorities in networks), and hence, r(a*) > ns. Note that the inequality follows
because we require R(a*) to contain more than half of interactions of B;, for all i € N while
the definition of a 2-monopoly requires R(a*) to contain at least half of the interactions of B;,.

Since r(a*) > ns is an increasing function of n, it follows that convention a* is uninvadable
whenever ns > n(a — a;) for all a € L\a*. And since n(a — a;) < b3 for all a € L\a*,

. . . . 3
convention a* is uninvadable, and hence, also contagious, whenever b5 < ns.

C Proof of Proposition 1

To prove Proposition 1, we first characterize the structure of stationary distributions, and

mp(x)
» ma(y)
We use the following results from Freidlin and Wentzell (1984).

in particular, the ratio , of stationary distributions of any pair of configurations x,y € X.

Lemma 1. (Freidlin and Wentzell, 1984, Lemma 3.1). Given a diffusion process Pg, the sta-

tionary distribution m3(x) of some configuration x € X is given by

-1

mx) = Y. Pg)| D D Psy) (7)

gel'({x}) yeX gel'({y})

where the total probability Pg(g) associated with each graph g is Pg(g) = H Ps(z,y) and
(zy)€g
['(x) graphs are defined in Definition 7.

To fully characterise the structure of mg, we first characterise the structure of transition
probabilities Pg(x,y) between pairs of states x,y € X. Recall that ¢(x,y) is the number of
mutations involved in the direct transition from x to y. That is, the number of players who
choose different strategies in state y than those chosen in state x, and that their choices are a
result of mutations. Employing Assumption 1, the transition probability P.(x,y) can directly

be expressed in terms of ¢(x,y) as

bmB\COY) £ g metey)
PB(XaY):<> ( Ta-m ) (8)

m m

The right hand side of (8) follows because, first, if 4 (i.e. the strategy i plays in configuration
y) is not a best response to x so that BR;(y’;x) = 0, then from (3), the probability that i plays
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y' is %. Consequently, the probability that ¢(x,y) players simultaneously play strategies that
. . . - C(x7y)
are not best responses to x in configuration y is (%) :

Second, if 3* is instead a best response to x, so that, from Assumption 1, BR;(y%;x) = 1,
then i plays y* with probability

d—‘—(l—e_ﬁ): m—i—(l—m)e*ﬂ

m m

Thus, the probability that the remaining n — ¢(x,y) players simultaneously play strategies that

m+(1—m)eiﬁ n=e(xy)

are best responses to x is ( —

Next, we characterise the probabilities of I'(x) graphs. From the definition of I'(x) graphs,
every g € I'(x) spans the entire state space except x, which is the root of the graph. Each
y € X\x has only one arrow emanating from it. Thus, each g € I'(x) contains a total of m™ — 1
directed edges, where m"™ is the cardinality of X. Similarly, if we let d(L;) be the cardinality of
D(Lj) (the basin of attraction of L), then there are d(L;) directed edges that originate from
states in D(Lj).

Now, let g(D(L)) be a subgraph of g consisting of all d(L;) directed edges that originate
from states in D(L;). Since D(L;) for all L; C L are non-overlapping sets, we can rewrite Pg(g)

as

=1 I P 0
Lj€eL (y,2)€g(D(L;))

We can further subdivide the set of edges of g(D(L;)) into those that involve at least one
mutation, denoted by g(D(L;);8), and those whose dynamics are governed solely by best re-
sponse, denoted by g(D(ij);B). That is, for each x € D(L;) and some y # x, a directed
edge (x,y) € g(D(L;); 8) if ¢(x,y) > 0, and (x,y) € g(D(L;); 8) if ¢(x,y) = 0. Using these

definitions and notation, P3(g) can be rewritten as

Ps(9) = ] I PBsy.2

L;€L (y,z)eg(D(Lj))

-1 1I (‘9_’8>C(y’z) n_ﬁ’z) (m + (1 - m)e—5>

Lj€L (y,2)eg(D(L;)) i=1

i ) ey
(y2)eg(D(L)8) \ m

L;eL €g(D

. 0 <m+(1—m)e—ﬁ>”] (10)

_ m
(v,2)€g(D(L;);B)

Let n(g; Lj; B) be the cardinality of subgraph g(D(L;); 8) (i.e. the number of directed edges
in subgraph g(D(L;); 8)) so that the cardinality of g(D(L;); B) is d(L;) —n(g; Lj; 8). Then (10)
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can be rewritten as

e B 2 (yaea(pin;ys) °¥E) m+ (1 —m)e P 2 (ymea(niyym (e¥2)
Ps(g)= ][
LjeL

) (m (- m)€_5>n[d(L1)n(g;Lj;ﬁ)]]

m m

(11)

m

e B ) Z(y,z>Eg(D<Lj>;ﬁ> oy.z) (m +(1—m)e P > ”[d(LJ’)_"(Q?LJ’?ﬂ)HZ(y,z)@(D(Lj);B)(”_C(y’z))

(=

LjGL m

The summation c(Lj;g) = > (y.2)eq(D(,);8) €(¥,2) on the exponent of the expressions of
Ps(g) in (11) is the total cost of leaving the basin of attraction of each L; under graph g € I'(x).
Using this definition, we can simplify n[d(L;) — n(g; Lj; B)] + X(y.2)eq(D(L,):8)(n — (¥, 2)) as

follows:

nl[d(L;) —n(g; Lj; B)] + > (n —c(y,z)) = nld(L;) — n(g; Lj; B)] + n(g; Lj; B)n — c(Lj; 9)
(y,2)€9(D(L;);8)

=nd(L;) — c(Lj; g)

Equation (11) then simplifies to

o c(Lj39) m+ (1 —m)e=B nd(Lj)—c(Ljsg)
o) = 11 ( ) L)

m m

=exp |— > <C(Lj5g)/3m + (nd(Ly) — C(Lj;g))5§n>
LjeL

—op |~ Y <c<Lj;g><6m—6;n>+nd<Lj>ﬁ:n) (12)

L;eL

—m)e—B
where 8, = f —Inm~! and ], = — In |mHI=meT )

Recall the definition of the long-run equilibrium of (A4,U, N, G, P.) as configurations that
maximize the stationary distribution. So, to compute the long-run equilibrium, we take ratios

of probabilities and identify configurations for which the ratio is less than one. Specifically,

configuration a* is a long-run equilibrium if :;((a)i)) < 1 for all x # a*. From mg(x) in (7), the
(%)

expression for the ratio of stationary distribution, ;Tﬁ ) of any pair of configurations x,w € X

is given by
T5(x) _ Lger(xp Fs(9)
(W) Ygerqwy) P8(9)

(13)

-1
where the quantity (ZyGX > geT({y}) Pg(g)) cancels out since it is identical for all configura-
tions.

Let v(x) = #I'(x) be the cardinality of I'(x). Since for any x € X every g € I'(x) spans the

entire state space except for one configuration (i.e. the number of edges in any g € I'(x) is equal
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to m™ — 1), the cardinality of I'(x) is the same for any pair of configurations x,y € X; that is,

v(x) = v(y) = . Using this notation, the following bounds hold:

P < max P, =~ max P
gel%xn B(g)_gerz({:x}ﬂer({"}) plo) = Je, 59)

S° Ps(g) > max Ps(g)

Thus, the ratio

:5((;)) is bounded from below and above by

maXger({x}) P5(9) < T(X) _ ymaXeer({x}) Ps(9)
ymaxger(wy) £(9) ~ ma(W) T maxgerqwy) Ps(9)

(14)

Substituting for Pg(g) from (12) into the ratios of stationary distributions in (14) yields the

following expression.

MaXger({x}) €XP [— YLevL <c(Lj; 9)(Bm — Br) + nd(%)%)]
maxer(¢x}) Ps(9)

maxger(fw}) Fs(9)

MAaXger({w}) €XP [— >.LeL (C(Lj; 9)(Bm — Brn) + nd@j)%)]

—oxp | min S Lo (B — B) — min S e(Lyi0) (B — Bl
p ger({w})sze:L (Lj; 9)(Bm — Bm) ger({x})LJZe:L (Lj;9)(B )

—exp | ~(Bn = F) | min Y e(Lysg)— wmin 3 e(Liig) || (15)

9l (b)) o, gel(iw)) 5,

whereby, due to the negative in the exponents, the expressions for Pg(g) are maximized when

the costs of exiting the basins of attractions of absorbing sets are minimized. Substituting (15)

m5(x)
(W)

into (14) yields the following lower and upper bounds for

=exp |—(Bm — B, min c(Li;g) — min c(Lj; +In 16
ma(w) P |~ ) gem{x})LJZG:L (L5:9) ger<{w}>L§L (aig) [t 10

Now, notice that for all 8 > 0, (8,, — 3,,) > 0: that is,

(B — B) = B —Tnm~ 4 1o | L=

=B —Inm'4+1n [m+ (1 —m)e_ﬁ} +Inm™!
=f+1In {m—{— (1-— m)e_ﬁ] (17)

Since m + (1 — m)e™® > 1 for all B > 0, it follows from the right hand side of (17) that
(Bm — BL,) > 0 for all 8> 0. Let ®(x,w) denote the difference between costs of graphs (i.e. the
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expression in the exponent of (16)). That is,

®(x,w) = min Zc(Lj;g)— min ZC(Lj;g)

9l (i) S, gel(iw)) S,

It then follows from (16) that

77:5((:)) < 1if ®(x,w) > 0 and that

~(Bm — Br)®(x,w) +1Iny <0 (18)

Substituting for the values of 3, and ], in (18) yields

In~y _3
g > Bl w) —In [m—l—(l—m)e } (19)
Let 8* be the solution to
~ Iny _3
8= B w) —In [m—}—(l—m)e } (20)
By comparison $* is smaller than @éizv)‘ To see why, notice that the function In [m +(1- m)e_ﬂ]

increases from 0 to the upper bound Inm as 8 — oo, which implies that =22 —In {m + (1 —m)e }

D(x,w)
decreases from @%i,’lv) to @éi}w) —Inm. This implies that the equilibrium value of 5 in (20), that
is, the value of 8 at which the 45-degree line depicting 5 = [ meets @221‘/) —1In [m +(1- m)e_ﬂ} ,
is less than ﬁ, and hence,
In~y
< 21
= d(x,w) (21)

It then follows that configuration a* is the long-run equilibrium for all 5§ > §* if it hase the least
cost a*-tree, that is, ®(x,a*) > 0 for all x # a*.

We now show that if a p-dominant strategy, a*

, is contagious in a given network, then
convention a* has the minimum cost I'(a*) graph. Note that configurations with the minimum
cost graph belong to some absorbing state, and hence, it suffices to focus on examining the costs
of graphs for configurations within L. Let ¢(a, g) denote the total cost of some g € I'(a) for any
a € L; that is,

daig)= min L]ZG:L c(Lj;9) (22)

We can see from (22) that ¢(a;g) is identical to the cost derived from a reduced form of
I'(a), denoted by I''(a), on a state space L x L (i.e. where vertices are absorbing sets). For any
g € I'"(a) the cost of an arrow originating from some L; € L is ¢(Lj; g).

We deduce from the proof of Theorem 1 in Appendix (B) that for convention a*, the minimum
cost graph in I''(a*) involves direct transitions from every a € L; C L\a* to a*, and each has
a cost bounded from above by c(a;g) < b5. Note that if c(a;g) < b5 for all a € Lj, then
c(Lj; g) < b5. Thus, if we let (*(L) be the number of independent absorbing sets in L (i.e. all
L; C L) with a* excluded, then

ba’) = min_ofa*;g) < bic*(L) (23)
g€l (a¥)
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Now, consider any other a € L C L\a*. The minimum cost graph in I'(a) will consist of
an arrow a* — a’ starting from a* to some a’ # a*. The minimum cost g € I'(a) can thus be
constructed from the minimum cost graph in I'(a*) by deleting a — a* and replacing it with

a* — a’, so that

a)=¢(a*) — min c(a;g)+ min c(a*; 24
o) =9(a’) ~ min_ claig) + min cla’ig) (21)
And hence,
3
_ *\ . *, . . . 5 — bk 9
(@) —¢a’) = min ca’yg) gerlzl,l({al*)C(a,g)>(n5 ) (25)

where the second inequality is because the minimum cost of leaving a* is greater than n’
mutations (see Appendix (B)) and that c(a;g) < b5 for all a € L; C L\a*.

Since ns > b3 is a condition for strategy a* to be contagious, it follows that ¢(a) —¢(a*) > 0
for all a € L\a*, and hence, a* has the minimum cost a*-tree. The inequality, ¢(a) — ¢(a*) >

né — b5, also implies that ®(a,a*) > ns — b5 for all a € L\a*. Thus,

1 1
nvy < n-vy

®(a,a%)  pd b

for all a € L\a*

It then follows that there exists some 8* € (0, In~v/ (ng —b§)} such that for all 8 > 8*, convention

a* has the least cost tree, and hence, the long-run equilibrium.

D Proof of Proposition 2

The following definitions are used in the next steps of the proof. Given transition probabilities
Ps(x,y) in (8), the cost function ¢(x,y) can be rewritten as follows
—1In Ps(x,y)

lim

Jim 5 = c(x,y) (26)

The following definition is for I'x (W) graphs, which are a special form of I'(IW) graphs
defined in Definition 7.

Definition 9. For any x € W andy € W where x # y, T'xy(W) is a set of all T(W)-graphs
which link x toy. For any two configurations x,y € W, I'x y (W U{y?}) is the set of T(W)-graphs
in which x is joined to some point 'y possibly itself and not to W, and that all other points of

W are joined to either the same point or to W.

Consider a configuration space X = {a,b,c,d, e, f, g, h} with examples of g-trees depicted
in Figure 4. Let W = {d, e, f, g, h}, with examples of T'(W') graphs depicted in Figure 5. Then
examples of Iy ¢ (W U {c}) graphs based on I'(W) graphs in Figure 5 are: {a — ¢,b — W}
for the graph on the left, {c — W,b — W} for the middle graph, and {a — b,c — W} for the
graph on the right.

Recall the definition of ¢p(W; g) for some W C X and g € I'(W) from Section C as ¢(W; g) =
> (x.y)€g ¢(x,y). The following result is derived in Catoni (1999, Proposition 4.2).
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Figure 5: Examples of I'(W) graphs, where W = {a, b, c}.

Lemma 2. For any W C X, W # 0 and W = X\W, for any x,y € W

. InE[T(W)| x¢ = %] . . :
lim = min W:g) — min min W 27
Jim 5 ,duin »(W:g) ) (W g) (27)

We are interested in the expected waiting time for convention a* associated with the conta-

gious strategy a*. Thus, we can substitute W = {a*} into (27). That is,

. InE[T'(a*)| x¢o = x] ) . )
lim = min ¢(a*;g) — min mi a*; 28
B—ro0 B gel(a*) #a9) yeL\a* gel'x,y (a*U{y}) Pla’sg) (28)

Recall from the analysis in Sections B and C for the minimum cost graph g € I'(a*),

the costs are bounded from above as c(a;g) < b} for all a € L\a*, and from (23), ¢(a*) =
Mingepa+) #(a*; g) < b5¢*(L). Focusing on reduced form graphs, I'(a*), it follows from the
definition of I', ., (a* U {a'}) graphs that minascr\a- mingerr | (a"Ufa')) d(a*;g) < b5(¢*(L) —1).
Thus, there exists some b* € (0,b3) such that

InE[T(a*)| xo = a]

I — mi ooy . o ,
pomo B et PE = B ers Ty @) (29)
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